

SYSC 3010 Group T1
Final Report - Safe Access Security System

Date of Submission: December 6, 2019
Carleton University

1125 Colonel By Drive

Professor: Cheryl Schramm

Github - ​https://github.com/kc-carleton/sysc3010-t1

Group members Michael Pruss 101008219
Michael Skalecki 100969837

Philip Naida 101012663
Keyan Cassis 101011524

https://github.com/kc-carleton/sysc3010-t1

1.0 Project Description

1.1 Problem Motivation
Data confidentiality and security is a growing concern in the modern world. Many institutions
and individuals have highly sensitive information that should remain confidential and not be
accessed by unlawful individuals. Currently there are many physical unsecure systems used to
store confidential information that allow unregistered users access [1]. Such systems pose risks
of stolen or leaked information that can be used to damage, bribe, and blackmail owners.
Securely storing physical documents and objects is paramount in ensuring their safekeeping
and preventing unwanted access [2].

The motivation of the project was to create a security system for multiple users to safely store
physical confidential information. The outcome of this project allowed users to store and retrieve
confidential and personal documents from multiple safes by entering their unique credentials.
The security system prevented unwanted access to secure safes and malicious access to
private documents by unauthorized individuals.

1.2 Problem Statement
The safe access system is a robust security system that allows users to store physical
confidential documents in multiple safes for easy and secure access. The safe access system
will be administered by Safety Security Inc. that will control user code creations, safe user
allocation, and will monitor malicious access. This system has similarities to a bank where users
deposit confidential items in physical safes that are managed by Safety Security Inc.
employees.

To facilitate user access, users will be able to enter configured user codes, passcodes, and safe
numbers to open specific safes which they have been granted access to by Safety Security Inc.
Multiple users may be permitted to access the same safe with their own individual
user_code/passcode combinations. Safety Security Inc. employees will distribute safe
credentials on a user basis through an administrative android app. Once the user has been
given access to a safe, the user will be given a unique user code and passcode through the
mobile android app. Using the given user_code, passcode, and the safe number, the user will
be able to access their granted secure safe. All of the credentials will be securely saved in a
database managed by Safety Security Inc. To ensure paramount security, the passcodes will be
hashed upon creation and will be stored as hashed values in the database.

Users will enter their user_code, passcode, and granted safe number to a centralized terminal
which will have control of opening all safes within Safety Security Inc through the centralized

server. To ensure security, each user’s passcode is hashed and stored in the terminal before
being sent to the centralized server. The centralized server will have access to all operable
safes and will receive requests to open safes from terminals. Upon receiving a request to open
a safe from a terminal, the centralized server will receive the entered user code, the hashed
passcode, and the safe number to open. The centralized server will access the database to
ensure that the user entered credentials match with the content in the database. Upon
successfully matching the credentials, the centralized server will open the specific safe,
assuming it has not been already open. The centralized server will send an acknowledgement
with a success or failure code to the terminal depending on whether the user credentials
matched the database and whether the safe is already opened. Upon entering an incorrect user
code, passcode, and safe number pair three times in a row, the centralized server will notify
Safety Security Inc. employees through the administrative android app.

2.0 System Architecture Design

2.1 Deployment Diagram
As shown in ​Figure 2.1.1 ​below, the system is separated into four main components that
include the Keypad Interface, Central Control, Door Interface, and Android App. The Keypad
Interface is responsible for receiving input from the user and displaying safe unlock results to
the user. The Keypad Interface also interacts with the Central Control to pass user credentials
and receive safe unlock status. The Central Control interfaces with the Door Interface,
Database, and a Monitor. The Central Control verifies user credentials with the Database and
sends an unlock signal to the Door Interface to unlock the door. The Central Control outputs
logs to the Monitor that detail user access. The Door Interface handles the unlocking and
locking of the safe. The Door Interface interacts with the DoorMotor and DoorSensor to detect if
the safe is open and to unlock and unlock the safe. Due to hardware limitations, only a single
Door Interface is used, however the system supports for multiple safes. The Android App allows
users to create credentials for safes. The Android App saves the credentials to the Database
which the Central Control has access to.

Figure 2.1.1:​ ​Deployment Diagram for Safe Access Security System

2.2 Sequence Diagrams
Referring to ​Figure 2.2.1​ below, the user is prompted to enter a user ID and passcode in order
to unlock access to a door. The KeypadController on Pi 1 encrypts the login and sends it to the
AccessSystem on Pi 2 over wireless UDP. Pi 2 is in headless mode. The AccessSystem
accesses AccessData through REST to see if the login is registered. If the login is registered
then the AccessSystem notifies the KeypadController to turn the LED Light to green, and the
AccessSystem notifies the DoorController through wired UDP to unlock the door. The
DoorController responds once the door is opened and the AccessSystem notifies the
KeypadController to turn the LEDLight to red. If the login is not registered then the
AccessSystem notifies the KeypadController to turn the LEDLight to red. Administrators can add
and remove logins through the AdministrationApp which updates the AccessData using REST.
The SafeApp displays the users are registered and the app alerts the administrator if a user fails
to type in a correct passcode three times.

Figure 2.2.1: Sequence Diagram

As shown in ​Figure 2.2.1​, the design ensures security by separating user keypad interactions
and safe door interface while encrypting all communications between modules. Attackers would
not be able to retrieve user Id and password pairs since they are encrypted in the database, in

UDP connection packets, and within the keypad controller. The safe door is also secured by the
Door Interface that is only accessed by the Central Control on entering correct user Id and
password pairs. The proposed security system will allow individuals to safely store confidential
documents within safes and securely retrieve the documents through encrypted passwords and
user Ids.

The following sequence diagram in ​Figure 2.2.2​ shows how the system would respond to a
user trying to unlock the safe. In this diagram there are two situations shown which detail what
would happen if the user inputs valid credentials, and the second showing if they were invalid
credentials.

Figure 2.2.2 Detailed Sequence Diagram of System

2.3 Message Protocol Table
The protocol used for UDP communication consisted of an opcode of fixed length, and then
based on the opcode type, either data, a command, or an error string followed the opcode finally
being terminated with a null character. ​Table 2.3.1​ shows the 4 different opcodes allowed.
Table 2.3.2 and 2.3.3 ​show the communication protocol between the Keypad Controller (KC)

and the Access System (AS) and the protocol between the AS and the Door Controller (DC)
respectively.

Table 2.3.1: Packet Types

Packet Type Purpose Opcode Identifier

Data Data transfer 0x01

Acknowledge Acknowledgement of
received packets

0x02

Command Issuing commands 0x03

Error Error notification 0x04

Shown below in ​table 2.3.2​ is the communication protocol between the KC and the AS. Data
packets are identified by the correct data opcode 0x01 and then followed by the json string to be
sent and terminated with a null character. Error packets are identified with the correct error
opcode 0x04, followed by the error string and terminated with a null character.
Acknowledgement packets are identified by the opcode 0x02 and followed by a boolean value.
In communication between the KC and the AS, the only acknowledgement packets which will be
sent are acknowledging data (containing user credentials) sent from the KC to the AS. The
boolean value returned in the acknowledgement packet from the AS to the KC tells the KC
whether the credentials entered by the user were correct or not, indicating whether to set the
green or red LED. This acknowledgement packet is also terminated with a null character.

Table 2.3.2: Communication Protocol between KC and AS

Sender Receiver Packet Type Packet Format

KC AS Data [0x01, JsonString, ‘\0’]

AS KC Error [0x04, errorMessage, ‘\0’]

AS KC Acknowledgement [0x02, boolean, ‘\0’]

In ​table 2.3.3​, the communication protocol between the AS and the DC is outlined. Error
packets are identified by the opcode 0x04 and are followed with an error string which is
terminated with a null character. Command packets are identified by the opcode 0x03, then
follows a command string and a null character. Acknowledgement packets are identified with the
opcode 0x02. Following the opcode, the packet contains either True or False. The packet will
contain True if the safe was previously locked and the command opened it, or if the safe was
already opened when the open command packet was sent, then the acknowledgement packet
will contain the value False. Acknowledgment packets are also terminated with a null character.

Table 2.3.3: Communication Protocol between AS and DC

Sender Receiver Packet Type Packet Format

AS DC Error [0x04, errorMessage, ‘\0’]

AS DC Command [0x03, doorAction:boolean, ‘\0’]

AS/DC AS/DC Acknowledgement [0x02, boolean, ‘\0’]

3.0 Discussion of Results

3.1 Changes From Proposal

The general architecture of the system has not changed significantly from the proposal.
Everything from the Keypad Interface, Central Control, Door Controller, Database remained.
The keypad and door sensor also remained, as well as the LED light and door motor. The
Android application was modified to be controlled solely by an administrator rather than having
both normal users and administrator users. The safe access logs were moved to be displayed
on a monitor rather than within the application. A monitor was added to the AccessSystem to
view logs of accessed users.

A significant change from the proposal was the introduction of multiple arduino boards. Each
board corresponds to a different safe and controls the unlocking and locking of the safe. Due to
the hardware limitations of the project, only a single arduino was used to control a single safe.
However, the Central Control, Keypad Controller, Android app, and the database support
multiple safes. Instead of using encryption to securely transfer passcodes, hashing was used to
hash passcodes prior to them being sent. The hashed values are then compared between the
entered user credentials and database of valid credentials. Hashing was introduced because
hashing is simpler to implement than private key encryption between the Door Interface and
Android App. WiFi communications are also encrypted by default so there is no major security
risk in this decision. All components were completed on time and integrated fully before the
project deadline.

Slight changes were also made to the DoorController’s peripheral circuits. Appendix B shows
the proposed arduino circuits from the design report. For the solenoid deadbolt circuit, it was
determined that a single 9V battery was not sufficient to power the solenoid in order for it to
retract the deadbolt. For this reason, two 9V batteries were placed in series to provide a total
voltage of 18V to the solenoid. This resulted in proper and timely functionality of the deadbolt.
Regarding the magnetic sensor in Appendix B, it was found that the 220Ω resistor was not
necessary as the arduino pin could be programmed to function as a pull-up resistor instead and
therefore the resistor was not included in the circuit.

The administrator does not get notified by the Central Control system if a user entered their
passcode incorrect three times. Instead, an incorrect passcode counter is incremented by the
Central Control in the database. If the counter reaches three, the Android App notifies the admin
about the infraction. This was changed to reduce the communications between the Central
Control and the Android App to be only through the database.

3.2 Findings
Through development with the Keypad Controller subsystem, limitations were found on the
speed of button pressing with the keypad itself. The minimum time between key presses is
around half of a second. The keypad used for our design is a strictly hardware interfaced
keypad which relies on the user to write drivers to use it as an input device to the system. The
reason for this key press speed limitation is due to the way the keypad must be polled for a key
press. Debouncing is required in obtaining input from the keypad and because of this, it limits
the speed at which the keys can be pressed.

In the future, or in a real world deployed system, a higher quality keypad potentially with
optimized software driven interfacing would be used to remove this limitation. Higher quality
hardware would remove the debouncing problem and optimized drivers would allow extremely
low time in between key presses.

Regarding the DoorController subsystem, it was found that while the chosen solenoid deadbolt
was very effective in retracting and locking the bolt, it consumed a large amount of power. This
was evident by the numerous 9V batteries that were used to depletion during the course of the
project’s progression. The magnetic sensor was found to be very accurate in its readings. The
hardware specifications for the device listed a maximum distance of 150mm for precise
readings. Through experimentation, it was noted that the magnetic sensor in fact required a
smaller than listed range to provide proper readings when the safe door is closed; perhaps
50-100mm. This was however in no way detrimental to the functionality and security of the safe
as the magnets nearly make contact when the safe door is closed and pushed back into the
safe’s frame.

4.0 Contributions

Table 4.1: Each members code contributions

Author Code

Michael Pruss ● Central Control and Access System
● test_central_access.py (Tests for

Access System)
● Helped with udp_utils
● UDP communications from Central

Control to Door Controller and Keypad
Interface

● Database

Michael Skalecki ● Android Application
● Database

Philip Naida ● Keypad Controller
● udp_utils (UDP communication

library)
● test_udp_utils (tests for UDP library)

Keyan Cassis ● Door Controller main loop and
functions

● Door Controller UDP communication
● Door Controller sw/hw test functions

Table 4.2: Each members document section contributions

Author Section(s)

Michael Pruss Section 1.1, 1.2, 2.1, 2.2, 3.1
6.0 Appendix A

Michael Skalecki Section 2.1, 2.2, 3.1, 6.0 Appendix A
Figures 2.1.1, 2.2.1

Philip Naida Sections 2.3, 3.2
Figure 2.2.2
Tables 2.3.1, 2.3.2, 2.3.3

Keyan Cassis Section 3.1, 3.2
Figures 5.3, 5.4

5.0 References
[1] “Dangers of Unsecured Data Systems,” 2019. [Online]. Available:
https://its-networks.com/dangers-of-unsecured-data-systems/​. [Accessed Sept. 29, 2019].

[2] “Start with Security - And Stick with It,” 2019. [Online]. Available:
https://www.ftc.gov/news-events/blogs/business-blog/2017/07/start-security-stick-it​. [Accessed
Sept. 29, 2019].

[3] “Use a Sparkfun COM-14662 12 digit 3*4 matrix keypad with a Raspberry Pi for PIR alarm
system,” 2018. [Online]. Available:
https://securipi.co.uk/use-a-sparkfun-com-14662-12-digit-34-matrix-keypad-with-a-raspberry-pi-f
or-pir-alarm-system​ [Accessed October 27th 2019]

[4] V. Kartha, "LED Blinking using Raspberry Pi - Python Program", ​electroSome​, 2019.
[Online]. Available: https://electrosome.com/led-blinking-raspberry-pi/. [Accessed: 03- Dec-
2019].

https://its-networks.com/dangers-of-unsecured-data-systems/
https://www.ftc.gov/news-events/blogs/business-blog/2017/07/start-security-stick-it
https://securipi.co.uk/use-a-sparkfun-com-14662-12-digit-34-matrix-keypad-with-a-raspberry-pi-for-pir-alarm-system
https://securipi.co.uk/use-a-sparkfun-com-14662-12-digit-34-matrix-keypad-with-a-raspberry-pi-for-pir-alarm-system

6.0 APPENDIX A

Github Repository URL: ​https://github.com/kc-carleton/sysc3010-t1

Code Repository:
The code repository is sectioned off for each component of the system. There are separate
folders for the Android app, Keypad Interface, Central Control, and Door Controller. The code
for the Android app can be found in the android folder, the Keypad Interface in the
keypad_controller folder, the Central Control in the central_control folder, and the Door Interface
in the arduino folder. Each folder contains the code to run each system as well as testing code
to test each component.

Arduino Setup:

1. In the android/DoorController folder of the git repository, find the file DoorController.ino.
Upload this file using the Arduino IDE to the Arduino Uno.

2. Setup the Arduino Uno board following the wiring diagram shown in ​Figures 5.3 and
5.4​.

3. Plug ethernet cable to ethernet switch that is connected to the Central Control Pi.
4. Door Controller should now lock and unlock safe based on requests from Central Control

Pi.
Keypad Controller Pi Setup:

1. Assuming that the keypad and LEDs are connected to the raspberry pi as shown in
Figures 5.1 and 5.2​, the next step would be to power on the Keypad Controller pi by
plugging in the power supply to the micro-USB interface on the raspberry pi.

2. Next, we need to connect to the pi to be able to download and start the keypad software.
This can be done by either plugging in a network cable to use for SSH between the pi
and another computer or you can connect the raspberry pi’s mini-HDMI interface to a
monitor as well as connect a keyboard and mouse for use with the raspberry pi. ​Note:​ If
you are using SSH, make sure you know the IP address of the raspberry pi. For this
project, we have set a static IP for easy connectivity.

3. Once you have connected to the Keypad Controller pi, you should clone the repository
from the link above.

4. For this project, static IP addresses have been set on all devices for smooth continuous
communication between devices. If you are running this on a new raspberry pi, make
sure you change the IP addresses and port numbers at the bottom of the
‘keypad_interface.py’ file in the ‘keypad_controller’ subdirectory to the IP address and
ports you intend to use in the system.

5. Now that everything has been setup, you may start the keypad software by running the
command ‘python keypad_interface.py’ in the ‘keypad_controller’ subdirectory. This will
tell the raspberry pi to start listening for keypad input. Now you can input your credentials

https://github.com/kc-carleton/sysc3010-t1

in the keypad and the Keypad Controller pi will send them to the Access System pi for
validation. Just be sure that all the other parts of the system are setup as well or the
system will not work.

Central Control Pi Setup:
1. Connect the Central Control Pi via ethernet to the switch which is connected to the Door

Controller.
2. Connect a monitor, keypad, and mouse to the Central Control Pi.
3. Ensure that the Central Control Pi is connected to the internet so it can communicate

with Keypad Controller and the database. Download the repository using command: git
clone https://github.com/kc-carleton/sysc3010-t1.git

4. Execute the central control python file while being in the root of the repository. Use the
command line to execute: PYTHONPATH=keypad_controller/ python3
central_access/central_access.py

5. Central Control Pi should now be ready to receive request messages from Keypad
Controller and to unlock the safe through the Door Controller.

Database, and Android App:
1. The database is always running, so no setup is needed here.
2. Load the Android application by installing the APK file named SafeApp.apk located in

/android on our repo, https://github.com/kc-carleton/sysc3010-t1
3. On the main screen of the app, you will be prompted for an admin login.

Username: ​admin
Password:​ pw

4. The Admin Controls screen provides the admin with the ability to add new users, remove
users, add credentials, remove credentials, as well as a view of all of the registered
users.

5. Begin by adding a new user and providing their name.
6. Add a credential by using the user’s usercode and a safe number to access.
7. Remember the passcode from the previous step as this will be hashed and

unaccessible.
8. Remove credentials by providing usercode and safe number.
9. Remove users by providing usercode.
10. If a user fails to login 3 times, a notification will automatically pop up within the

application.

7.0 APPENDIX B

Figure 5.1: Keypad Interface hardware schematic [3]

Figure 5.2: LED interface to Pi [4]

Figure 5.3: Solenoid Deadbolt circuit diagram

Figure 5.4: Magnetic Sensor circuit diagram

