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Abstract 
Curb detection is a basic task in the field of autonomous driving where 3D LiDAR is commonly                 
used both independently and in corroboration with other sensors or cameras. This paper             
presents a curb detection method for use on LiDAR point clouds which follows 5 main steps: (1)                 
LiDAR data is passed through a filter to remove points which are part of the road or objects                  
such as trees. (2) Similar points are clustered together so that each cluster represents a               
different entity in the point cloud. (3) Point clusters are denoised using principal component              
analysis to further reduce noise which could cause false positives. (4) The point cloud is split in                 
half to separate the left and right curb and each side is segmented into small linear segments                 
which allows both linear and curved curbs to be represented. These segments are grouped with               
other similar segments which likely belong to the same entity. (5) Confidence values are              
assigned to each segment cluster based on their curb-like characteristics. In an effort to reduce               
processing time of real-time data, successive LiDAR snapshots are filtered around the likely             
location of the curb which is determined from the previous snapshot’s detection. A road              
detection method is also presented which determines the curb location based on the edges of               
the detected drivable road. The difference in radii of adjacent LiDAR lasers are examined to find                
inflection points which represent the road’s edges, and thus contain the drivable road between              
them. A corroboration method is proposed to combine the results of the curb detection method               
and road detection method in an effort to increase the confidence of the detection. Results show                
that curbs are detected consistently with little occurence of false positives. 
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Chapter 1: Introduction 
Autonomous Vehicles are increasingly becoming a hot topic among tech-enthusiasts and the            
public alike. Companies such as Tesla, Uber, and Google are involved in shaping a new market                
of cars that drive themselves. These companies often herald the benefits of autonomous driving              
and the tools that have enabled their achievements so far. Some of the most important               
advances to date involve driver assistance systems and the suite of sensors used to gain an                
understanding of the car’s environment. These sensors allow a computer to analyze the road,              
plan paths, and identify objects such as cars, bikes, or pedestrians. There are multiple              
approaches to the analysis of the road; Tesla and Google, for example, use machine learning               
extensively to analyze the driving environment, detect objects, and plan paths [1]. Other             
companies, like QNX, prefer mathematical and algorithmic approaches. Nonetheless, the topic           
of autonomous driving often brings up interesting questions around vehicle safety, accountability            
for road accidents, and energy efficiency . That said, this project is a collaboration with QNX to                1

develop novel methods of reliable, real-time curb detection for autonomous vehicles. The            
remainder of this report proceeds as follows: First, the problem is identified in the Problem               
Motivation and Background sections. Then, the problem being investigated is explicitly stated            
and a solution is proposed. Next, the management of the project is discussed, with sections               
describing the safety precautions taken, the individual contributions, and engineering          
professionalism. Then, the Design section elaborates the methods used to accomplish the            
proposed solution. The Design section includes a detailed background which elaborates related            
work and terminology, discussion of alternative design solutions, and finally, a discussion of the              
achieved solution.  

1.1  Problem Motivation 
Driving a vehicle is an inherently dangerous task. This is evidenced by collision statistics              
showing that 114,158 injury-causing collisions occurred in Canada in 2017, resulting in 154,886             
injuries [2]. Consequently, driving is regulated by governments to ensure a minimum standard of              
knowledge and competence among drivers (i.e. getting a license). The Ontario Ministry of             
Transportation, for example, regulates driving and defines guidelines for safe driving, stating            
that drivers must “know the traffic laws and driving practices that help traffic move safely” and                
that “breaking these ‘rules of the road’ is the major cause of collisions” [3]. Furthermore, drivers                
are imbued with responsibilities such as defensive driving, and being predictable and courteous             
to other drivers and road users [3]. These guidelines are often followed by drivers but accidents                
still occur and they may cause injury and death. It is worth noting that as many as 80% of                   
collisions are at least partly caused by driver distraction or inattention [4]. It is unsurprising that                
the Canadian Automobile Association estimates the “economic and social consequences of           
road crashes in Canada … to be $25 billion per year” [4].  
 

1 The trolley problem for example. 
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Distracted driving is just one factor in a multitude that contributes to road accidents. The effects                
of distracted driving can however be severe. For example, the RCMP states that distracted              
driving can lead to “reduced reaction time, impaired judgement, falling asleep behind the wheel,              
injuring or killing yourself and/or your passengers and others” [5]. There are a few obvious               
remedies to the problem of driver distraction and inattention, namely, increasing fines as was              
done in Ontario in 2019, or passing new laws [6]. However, engineers have a duty to the public                  
to design safe systems, thus, an effective engineering solution would include systems to reduce              
incidences of collisions and injuries thereafter related. 
 
The motivation of this project is to produce a system with improved awareness of its               
environment in order to assist the driver and any automated systems in completing the driving               
task safely. The outcome of this project allows for increased safety of all road users by driver                 
assistance systems, allowing the on-board computers to be paying attention even when the             
driver may not be.  

1.2 Problem Background 
Advanced Driver Assistance Systems (ADAS) are features in vehicles that aim to avoid and/or              
lessen the impact of collisions [7]. ADAS technologies are meant to be supplementary systems              
to the driver, i.e., the driver must still be fully alert while driving since these systems can not                  
prevent accidents, only mitigate their risk. ADAS systems are back ups; the last resort for when                
the driver is unable to make the correct decision to maintain safety. They are meant to prevent                 
or reduce the likelihood of injury and death. ADAS systems are already being used for blind spot                 
detection, collision avoidance, adaptive cruise control, lane departure warnings, and lane           
keeping to name a few. These systems are implemented to aid drivers in the driving task by                 
supporting their requisite actions such as checking blind spots, keeping a safe distance between              
themselves and the car ahead, staying in their lane, etc. Essentially, the point of ADAS systems                
as they currently stand is to help human drivers make better decisions, and increase safety               
through hazard detection and mitigation [7]. 
 
ADAS systems require sensors to accomplish their tasks. These sensors differ for each             
application, but in essence, the sensors are used to gain a better understanding of the               
environment around the vehicle. For instance, automatic emergency braking, adaptive cruise           
control, and blind spot detection use an assortment of RADAR, cameras, LiDAR, and ultrasonic              
sensors to accomplish their detection tasks [8-10]. The sensor of interest for this project is               
LiDAR (Light Detection and Ranging). LiDAR uses lasers to detect the distance between the              
sensor and the surrounding environment by calculating the time-of-flight of a laser pulse [11].              
This project uses the HDL64E LiDAR manufactured by Velodyne. The HDL64 is a 3D LiDAR               
sensor, meaning it generates a view around the entire vehicle (360​o horizontal field-of-view) for              
multiple vertically-stacked lasers (27​o​ vertical field-of-view) [12].  
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1.3 Problem Statement 
The goal of this project is to build a framework whose functions are to: 1) visualize three                 
dimensional LiDAR data; and 2) detect and identify road curbs in said data. The framework               
visualizes the detected curbs in a three dimensional map to form a view of the vehicle’s                
environment. The framework reports the detected curbs to an ADAS program where data fusion              
and route planning algorithms (e.g. those designed by QNX) use the detected curbs to gain a                
better understanding of the car’s environment. The framework is designed to operate within a              
real-time deadline to allow for reliable, safety-critical, decision making. A completed system (i.e.             
the framework integrated with an ADAS platform) should aid the driver and car computer              
systems in understanding the road environment and it should allow for more complete ADAS              
functionality such as lane-keeping and path planning, with the goal of decreasing the number of               
driving accidents.  
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Chapter 2: The Engineering Project 
The fourth year project is a culmination of all of the work that a student has performed                 
throughout their degree. This chapter will discuss the project’s adherence to health and safety,              
usage of engineering professionalism, how the project was managed, relation to each member’s             
degree program, and each member’s contributions.  

2.1 Health and Safety 

Automotive systems such as ADAS directly impact the safety of the occupants of a vehicle.               
Given the aforementioned ADAS functions and the role or an assistance system in the              
prevention and mitigation of road accidents, it is necessary that these systems are designed              
with safety and reliability in mind. In the case of curb detection, an ADAS system will                
continuously monitor the vehicle’s environment, tracking the curbs, and identifying the limits of             
the road. Redundancy and corroboration of detection is a necessity in this, and many other               
safety-critical tasks. The curb detection algorithm presented in this project has been designed to              
integrate two methods of curb detection for redundancy and corroboration. In this way, an              
environmental obstacle can be validated as a curb. This makes certain that a curb is not                
missed, nor incorrectly detected. 

The project is entirely software based so the majority of health and safety concerns were not                
applicable to this project. The project was developed in a safe environment which respected              
each team member’s health and safety. A room was assigned to the group where members               
could work together while seated in ergonomic chairs and developing software on personal             
laptops or the provided desktops. There were no hazards present in the room that could               
negatively affect a member’s health. One issue that concerned the room was the lack of               
windows and openings for fresh air. This issue was overcome by leaving the door ajar in order                 
to allow fresh air. The team members were accommodated with a fridge as well as ample space                 
to ensure that the room was easy to exit in case of emergency. Many breaks were taken during                  
development and members had the option of working at home on their personal devices. Breaks               
were recommended in order to avoid significant eyestrain and muscle fatigue. The amount of              
time spent on development daily was restricted in order to ensure that fatigue is limited and                
consistent performance be maintained. Each member had a choice of chair they wished to use               
and an appropriate height to work at for ergonomic purposes. 

2.2 Engineering Professionalism 

This project, through the development of an ADAS-accompanying system, concerns public           
safety. Professionalism is a necessity to ensure a safe and reliable system for use by the public.                 
Engineering practitioners have a legal obligation to ensure the welfare of the public. This project               
was designed with the intention of detecting curbs along the road. During development of this               
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system, focus was placed on reliability and safety through the practice of testing. The system               
was tested with several sets of data on different roadways to ensure effective detection across               
multiple scenarios. The team worked diligently to avoid mistakes and to develop a reliable              
system. 

The system consists of original software which involves the use of state-of-the-art methods for              
curb and obstacle detection. These methods were researched and analyzed to determine the             
best application for curb detection with LiDAR. For ethical and professional purposes, all             
persons who deserve credit have been referenced and any work that has been used in this                
project is included as reference. This project displays the notion of public welfare and safety               
being paramount since it strives to reduce road accidents, and increase overall road safety              
through environmental perception. Professional ethics are required due to the safety concerns            
present in an ADAS system since driver and pedestrian safety may be impacted.  

2.3 Project Management 

The project was managed through scheduled weekly meetings where progress, complications,           
and future plans were discussed. These meetings were required for all members of the project               
and Dr. Gohary attended each of them. Additional meetings between the entire group were also               
arranged when necessary. Work was divided amongst the group in order to ensure that each               
individual had tasks to work on. The project group was divided into subgroups in order to focus                 
on parts of the project which would later be integrated into the final product. The primary focus                 
of each subgroup was to develop their own implementation of the curb detection algorithm. Both               
of these methods were later integrated in order to corroborate one another. Subgroups held              
meetings during the week when necessary and all members of the project communicated             
through Slack. Dates and deadlines were established for tasks.  

The implementation of each method followed an incremental development process. The           
implementation began with unreliable detection which functioned under limited circumstances          
and assumptions. Incrementally, the method was improved upon and limitations and           
assumptions were progressively removed. 

This process of forming subgroups and dividing work along with holding weekly meetings             
provided valuable experience. Projects in industry will involve working in teams and will             
necessitate coordination amongst team members to ensure an efficient development process.           
The action of working together in order to build the final system will prove to be invaluable                 
experience. 

2.4 Justification of Suitability for Degree Program  

Each member of this project is enrolled in Computer Systems Engineering. The project provided              
valuable experience in the development of software in the context of a real-time system. The               
project performed data analysis on point clouds from the Velodyne HDL64E 3D LiDAR. Data              
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analysis is an important aspect of engineering and the development of curb detection models              
provided valuable experience in data science.  

Initially, the point cloud data was extracted from a QNX visualization environment in order to               
develop the curb detection algorithm externally in Python. Using Python, each member            
contributed to the development of a curb detection algorithm. The process of developing this              
algorithm exposed each member to the software development cycle of requirements elicitation,            
design, implementation, and validation/testing. Carleton has provided the group with classes           
that enabled each student to develop robust and logical software needed to complete this              
project. SYSC 3303 and SYSC 3010 taught students how to work together in groups in order to                 
develop a software system. These classes provided valuable experience, and taught how to             
divide work and integrate individual contributions. SYSC 3020 and SYSC 4106 provided            
experience with systematically developing software and the proper lifecycle of software. After            
completion in Python, the software was ported to C where the curb detection algorithm was run                
on a simulation of the vehicle’s real-time computer system. From experience with embedded             
systems and real-time courses, the team strived to optimize the data analysis algorithm to              
execute within the vehicle’s hard real-time deadline. This project exposed each member to a              
variety of software concepts and greatly helped members develop coherent software. Members            
acquired invaluable literature skills through the research of contemporary methods of curb            
detection. 

2.5 Individual Contributions 
Each member performed their own research and application of said research. The report was              
written and reviewed equally and each member’s specific contributions are listed below in ​Table              
2.1​. 
 

Table 2.1: Project and Final Report Individual Contributions 

Member Project Contribution Report Contribution 

Danilo Vucetic ● Contributed to the curb detection algorithm 
through research of state-of-the-art methods, 
development of these and new methods, testing, 
and modelling. 

● Contributed to the similarity filter. 
● Developed the similarity metric. 
● Contributed to segment grouping technique. 
● Developed the segment-based point reduction 

technique and modelled its behaviour. 
● Developed early detection techniques including 

sliding windows, linear curb detection, and 
idealized curbs. 

● Labelled point clouds for testing. 

1, 1.1, 1.2, 1.3, 3, 3.3, 5, 5.1, 
6, 6.2.1, 6.8.1, 8.3, 9, 9.1, 9.3, 
9.4, Conclusion 
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Michael Pruss ● Contributed to the curb detection algorithm 
through research of state-of-the-art methods, 
development of these and new methods, testing, 
and modelling. 

● Contributed to the similarity filter. 
● Developed PCA and normal vector extraction 

through research and applied it to various steps in 
the curb detection method. 

● Developed the segment grouping technique.  
● Developed confidence metrics. 
● Developed early detection techniques including 

sliding windows, linear curb detection, and 
idealized curbs. 

● Tested numerous clustering techniques for use in 
the final method.  

5.2, 5.3, 6.2.2, 6.4, 6.5, 6.6, 
6.7, 6.7.1, 6.7.2, 8, 8.1, 8.2, 
9.2 

Michael Skalecki ● Developed the Hough transform method through 
research of several articles for detection of linear 
curbs. 
○ Application to curb detection is viable but was 

not used in the final method. 
● Aided in road surface detection and developed a 

second method for detecting relevant inflection 
points that lie on the road’s curbs.  

● Labelled point cloud data for various scenarios to 
be used to validate detection.  

● Created a video to demonstrate the project. 

2.1, 2.2, 2.3, 2.4, 4, 4.1, 7.1.2, 
7.2 

Philip Naida ● Developed the road detection method through 
research of state-of-the-art methods. 
○ Developed the surface variation method of 

inflection point detection. 
● Developed and Researched methods for curb 

detection and noise filtering using Fourier 
transforms. 

● Developed the road surface filter through research 
of point cloud edge detection using the surface 
variation metric and tested its use in curb 
detection. 

● Developed novel edge detection methods for point 
clouds using the surface variation metric.  

● Contributed to the combined detection method. 

Abstract, 3.1, 3.2, 4.2, 4.3, 
7.1, 7.1.1 

Keyan Cassis ● Contributed to point cloud preprocessing. 
● Contributed to the similarity filter. 
● Implemented most of the final method in C in the 

QNX environment for real-time testing and demo.  

Table of Contents, List of 
Figures, List of Tables, 6.1, 
6.2, 6.2.1, 6.3, 6.8, 6.8.2, 
6.8.3 
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● Investigated clustering techniques as a method of 
denoising and curb detection.  

● Developed the rear-environment recall method of 
real-time speedup.  

● Investigated curb line equation extraction using 
RANSAC 
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Chapter 3: Background and Related Work 
Autonomous vehicles and ADAS require some level of environmental perception if they are to              
aid in, or fully complete, the driving task. Depending on the level of automation, different levels                
of environmental perception are required. The accepted scale of automation levels for            
autonomous vehicles is presented by the Society of Automotive Engineers (SAE) as a six-level              
scale from 0 to 5, where 0 indicates no automation, and 5 indicates fully autonomous driving.                
The ADAS solutions presented in ​Section 1.2 are never surpassing an SAE Level 1              
automation, meaning that they never aid the driver past assistance with acceleration or steering              
[13]. From the point of view of an ADAS, this should be self-evident since the system                
necessarily complements the driving task. It was previously stated that these Level 1 systems              
generally use RADAR, LiDAR, cameras, and ultrasonic sensors to perceive their environments.            
These sensors are usually used in the context of detecting other vehicles and, for example,               
matching their speed, or using cameras to detect and stay within a driving lane [7-10]. Higher                
levels of automation require a more complete understanding of the environment around the             
vehicle. If, for example, a car were to reach Level 3 automation, where the car itself handles the                  
dynamic driving task but still requires a human driver, the car would need to perceive the                
driveable road, the edges of the drivable space, obstacles, and so on [13]. The detection of                
curbs and the road form a useful analog to the detection of the edge of drivable space, and thus                   
provides a starting point to the advancement of autonomous driving. Various approaches have             
been studied to this end and are introduced below.  
 
Camera-based methods of curb and road detection have been studied extensively. In [14], an              
elevation map is constructed from stereo camera data and edge detection is applied to extract               
height variations in the image. The Hough transform is used to extract curbs from a set of                 
persistent curb points based on height variations in the elevation map. Curved curbs are              
detected using a chain of straight segments. Other camera-based methods look at road             
detection and the use of machine learning algorithms like Convolutional Neural Networks            
(CNN). A popular dataset for the development and comparison of road detection methods is              
KITTI [15, 16]. This dataset provides data for video cameras, LiDAR, and localization equipment              
with thousands of labelled data points. Road detection benchmarks on KITTI aim to detect the               
road based on either the use of cameras, LiDAR, or a combination of both. [17] used the                 
camera data from the KITTI dataset and applied a CNN with gated recurrent units for road                
segmentation . An embedding of the image was created using convolutional layers, which was             2

then fed to gated recurrent units and decoded to produce the segmentation. This method’s              
effectiveness suffered from the sole use of cameras as the detection medium. Cameras are              
subject to issues around lighting conditions (shadows, confusing colours) and blur which cause             
false positives and false negatives. Road and curb detection should therefore be completed             
with, or supplemented with, other sensors which do not suffer from the same sensitivities.  

2 Segmentation refers to the process of assigning a label (curb, pedestrian, road, camel, etc.) to each                 
element of an input, be it a pixel in an image or point in a point cloud. 
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Many of the highest-accuracy benchmarks on KITTI for road detection make use of both              
cameras and LiDAR through various sensor fusion techniques [18-21]. In [18], a Progressive             
LiDAR Adaptation for Road Detection (PLARD) approach is introduced to map LiDAR data to              
images with the goal of better detecting the road. This is accomplished through the adaptation               
of LiDAR data to the visual data space by aligning the perspectives of each sensor and by                 
adapting visual features to features in the LiDAR data. PLARD uses a cascaded fusion              
architecture with Deep CNNs (DCNN) to adapt and fuse the data. The final stage of the neural                 
network is a parsing layer which classifies road features. PLARD is exceptionally effective at              
road detection and ranks among the top benchmarks on KITTI. The authors state that “LiDAR is                
helpful for boosting robustness” and that “LiDAR is robust to visual noises and can complement               
monocular image data” [18]. Thus, fusion-based road detection techniques seem to be quite             
promising. That said, other LiDAR-based techniques perform remarkably well in road detection            
without the use of sensor fusion. In [22], a method for road detection using LiDAR is presented                 
which examines adjacent LiDAR lasers to locate the edges of the road and classify all areas in                 
between as the road surface. A major advantage of this approach is that it allows the edges of                  
the road to be detected in both structured roads (with curbs) as well as unstructured roads                
(without curbs). This approach, however, fails to delineate objects, such as cars, from the road               
edge. Thus, for curb detection specifically, other approaches must be examined.  
 
Curb detection remains a difficult task regardless of the detection medium. Camera-based            
methods are sensitive to environmental conditions (light, weather, etc.), noise, and blur,            
whereas LiDAR can detect distance without interference from light, but is sensitive to weather              
conditions (e.g., heavy snow and rain) and may become distorted in turns or at high speed [23,                 
24]. A common trend among most LiDAR-based curb detection methods is the reliance on              
filtering . For example, [23, 25, 26] use some form of ground segmentation to differentiate              3

on-ground points (road, curbs, cars, etc.) from off-ground points (trees, buildings, etc.). [23] and              
[25] use plane-based segmentation methods to delineate ground points and apply Random            
Sample Consensus (RANSAC) to better fit the plane to the on-ground points. [26] on the other                
hand uses a voxel grid to identify on-ground points. While the three methods fundamentally              
differ in how they achieve ground segmentation, they produce the same result: reducing the              
number of points in the point cloud while maintaining resolution on the curb. This idea was used                 
in the development of the curb detection method presented in this report, and is essential to                
understanding how each of the three cited methods work. 
 
In [23], distortion is removed from LiDAR data and ground points are segmented in a               
preprocessing step. Ground points are passed to an extraction step which uses multiple             
features of a curb (height, smoothness, tangent between neighbouring points, horizontal           
distance) to detect and extract candidate curb points. Then, the candidate points are clustered              
using a variant of DPCA and DBSCAN to classify left and right candidate points under different                

3 Filtering is considered here not in the traditional sense of applying a transfer function to remove certain                  
frequencies or elements of a signal as such; but instead as the application of an algorithm to remove                  
unwanted points from a point cloud. 
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road curvature conditions. Next, a filtering step is applied to the curb points which removes               
obstacles inside and outside the road. Finally, a curb line is fit to the left and right candidate                  
points. [25] uses a similar candidate curb extraction technique, but with an added sliding-beam              
segmentation method prior to the curb extraction. [25] also omits a clustering step and a               
regression step which decreases the experimental precision and recall compared to [23]. This             
suggests that, for a robust curb detection technique, a method of clustering and regression to               
remove non-curb points and obstacles is necessary.  
 
[23] and [25] presented some interesting methods, particularly, the extraction of a curb based on               
the tangent vector between neighbouring points. This method calculates an average direction            
vector for a set of points on either side of a candidate point . If the angle between the vectors is                    4

low enough, as set by a threshold, the point can be considered a curb point. [26] similarly                 
extracts curbs based on curb features but uses voxels to its advantage. Voxels maintain locality               
in a 3D environment, this is useful in curb detection as changes in height, gradient, and surface                 
normal within each voxel can be used to detect a curb. Each voxel is analyzed such that the                  
height and gradient don’t exceed expected thresholds for curbs. The calculation of a surface              
normal is done through Principal Component Analysis (PCA) based on the eigenvalue            
decomposition of the covariance matrix of the voxel. Any points fitting all three of the               
characteristics are considered curb points. The methods cited above for curb detection mostly             
report curb points or least-squares regression models of the curb lines. While this is effective for                
continuous curbs, a regression model cannot adequately detect instantaneous differences in           
curb position such as those seen with bus stops, intersections, and parking lots. Reporting curb               
points on the other hand may misrepresent the tendency of the curb as no indication on the rate                  
of change of its position is given. Thus, a new reporting mechanism shall be introduced.  

3.1 Structure and Characteristics of LiDAR Data 
Light Detection and Ranging (LiDAR) is being used by many companies such as General              
Motors and Baidu for environment perception [23]. LiDAR is a surveying method which uses              
lasers projected from a sensor to map the surrounding environment. Referring to ​Figure 3.1​, the               
distance, p, that each laser travels before it hits an object can be calculated based on it’s time of                   
flight or phase difference, giving position data of the object it hit. This time of flight value is                  
simply the difference in time between the moment the laser was projected from the sensor and                
the moment the reflection is received again at the sensor [27]. This distance combined with the                
azimuth of the laser, ​theta​, from when it captured the sample as well as the vertical angle of the                   
laser, ​phi​, allows mapping of each sample point to a 3D cartesian coordinate (x, y, z). The                 
LiDAR sensor does this with reference to itself as the point of origin. LiDAR data is structured so                  
that with reference to the LiDAR sensor, the x-axis represents the lateral distance to the left and                 
right, the y-axis represents distance forward and backwards and the z-axis represents the             
vertical distance. It should be noted that the values for the y-axis coming from the LiDAR sensor                 

4 As in, the x and y components of all component points on that side are averaged to form a new direction                      
vector with respect to the candidate point. 
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were multiplied by -1 prior to processing due to the ADAS platform having an inverted y-axis.                
Representations for p, theta and phi are shown in ​Figure 3.1​. 
 

 
Figure 3.1: LiDAR Coordinate System [28] 

 
The specific LiDAR sensor used for this project was the Velodyne HDL64E LiDAR sensor. The               
HDL64E has a fan of 64 lasers arranged vertically, each which are mounted at different               
incrementing angles with reference to the ground. This results in a vertical field of view of 27​o                 
[12]. This fan of lasers is then rotated about the vertical axis of the LiDAR sensor at a rate of                    
10Hz while each of the 64 lasers is sampled at a high frequency to produce 1821 sample points                  
per rotation per laser. This produces 116,544 total data points per rotation which map the               
surrounding environment. Due to the fact that the 64 lasers are mounted to the LiDAR sensor at                 
incrementing angles, the farther you move away from the sensor, the point density of LiDAR               
samples decreases. This has the effect of decreasing the resolution of the LiDAR point cloud far                
away from the vehicle causing detection algorithms using only LiDAR to suffer more as distance               
from the vehicle increases. This is shown in ​Figure 3.2​. 
 

 
Figure 3.2: Unfiltered LiDAR Snapshot 
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Figure 3.2​ depicts a full unfiltered LiDAR snapshot (i.e. data from one full rotation of the LiDAR 
sensor). This figure shows how the LiDAR point density decreases as you move further away 
from the vehicle. The result of this is that further away objects will have less data points on them 
than objects which are close to the sensor. Generally, the more data points on an object, the 
easier it will be to identify. This means that identifying objects which are far away will be harder 
than identifying objects which are close due to a lack of data.  

3.2 Properties of Curbs and the Road in LiDAR Point Clouds 
LiDAR point clouds have useful properties for detecting objects: each point is represented by a               
3D cartesian coordinate (x, y, z) meaning the distance to an object or any sample point in the                  
point cloud with reference to the sensor is known. The height and width of an object is also                  
represented by a set of discrete points which lie upon it within the point cloud. In a scenario                  
such as curb detection, the important properties for LiDAR include the number of points on the                
curb itself, the height of the curb, and the continuity of the curb. The number of points on the                   
curb determines the amount of detail which can be extracted from the data. This number               
completely depends on where the curb is located with reference to the LiDAR sensor and the                
number and positioning of the lasers in the LiDAR sensor. As explained in ​Section 3.1​, the                
LiDAR point density decreases the further away from the sensor you go meaning there will be                
less points on a curb that is far away than one which is close to the LiDAR sensor. This results                    
in it being more difficult to identify objects such as curbs at far distances from the sensor. 
 
The City of Toronto’s official road engineering guidelines state that a road curb has a height of                 
150mm but can be as low as 100mm depending on drainage factors [29]. These variations are                
important to know for filtering steps that are presented in later sections as the tops of the curb                  
could be removed if the data were to be truncated, for example, at some height level. Curbs can                  
also be linear or curved. They can be continuous on long stretches of unpopulated road or have                 
many discontinuities such as on a road with depressed sections of curb for driveways. It is                
important that the LiDAR sensor is able to capture the differences between these situations as               
they may present different actions to be taken on behalf of the driver. 
 

 
Figure 3.3: Example Curb Model [30] 
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Figure 3.3​ shows an example of a linear continuous curb. The curb is present on both the left 
and right side of the road. Ideally, the LiDAR sensor will sample an adequate number of data 
points on this curb so that the full structure is recreated in the point cloud. Edges should remain 
sharp and flat surfaces should remain planar. The sampling frequency of the velodyne HDL64E 
sensor used for this research satisfies these requirements. 

3.3 Data Structures 
Point clouds generated by the Velodyne HDL64E contain around 116k points per rotation. Each              
point individually denotes the cartesian coordinate of the location where a laser reflected off of a                
surface. Henceforth, the vector shall represent a point in the point cloud,    x , x , x ]x = [ (1)  (2)  (3)          
where each component of the vector represents the cartesian coordinates x, y, and z. Given the                
large size of these point clouds, a data structure was created to quickly store and access the                 
points in an ordered manner. Due to the size of the point cloud and the data per point (laser ID,                    
azimuth, elevation angle, distance), it was decided to use a matrix whose indices are: the laser                
ID for the rows, and the point number for the columns. The matrix form is a useful                 
representation of the data insofar as it maintains the locality of the points in the point cloud. This                  
allows for effective iteration through the points since adjacent points in a laser line are next to                 
one another and points in adjacent laser lines have similar azimuths. The matrix is defined as                
such: 

● Given a laser ID , bounded by the number of lasers , l L  [1, L]l ∈    
● Given a point number , bounded by the number of points , p P  [1, P ]p ∈    
● Where each element of the matrix  is indexed as the vector xlp  

 

  
 
In later processing steps, locality between points in the same laser line is no longer required, so                 
the matrix form of the point cloud becomes obsolete. These steps use a vector form of the                 
pointcloud where the point cloud is represented as a vector of points, . The vector is defined            Y      
below: 

● Given a point number , bounded by the number of remaining points , n N  [1, N ]n ∈    
● Where each element of the vector  is indexed by the vector Y xn  
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Chapter 4: Transforms and Filters 
Transforms are useful in signal processing to analyze individual components of a signal. The              
individual components may provide insight into particular parts of the whole signal. Transforms,             
such as the Fourier Transform, and the Hough Transform, were experimented with to find              
patterns in the 3D point cloud data. Members have had exposure to various Fourier Transforms,               
which can decompose a signal into its constituent frequencies. The Hough Transform was             
introduced by Dr. Gohary and its properties of line detection within point clouds were explored.               
The Hough Transform is useful in detecting shapes within 2D and 3D point clouds, such as lines                 
and circles [31]. These transforms were experimented with to see if their use can be applicable                
to curb detection. 

4.1 Hough Transforms 
The Hough Transforms are primarily used to detect lines within a 2D plane of points. This                
property can be applied to the detection of curbs in point cloud data. Hough Transforms are                
also capable of detecting circles and various shapes however this functionality was not used for               
this method [31].  
 
An initial assumption of the project was to detect curbs of linear nature, such as curbs along a                  
highway which do not curve significantly and have minimal discontinuities. This limitation            
allowed the detection to be easier by limiting the variables present in the data. The LiDAR point                 
cloud data is originally provided in 3D but this is not necessary for detection of curb lines using                  
Hough Transforms. The first step was to convert the 3D point cloud into a 2D plane which can                  
be visualized from a bird’s eye view as in ​Figure 4.1​. This will remove the vertical z component                  
and will cause an apparent clustering of points along the linear curbs where the laser tends to                 
hit the side of the curbs. It is visually apparent that the curbs have a distinct linear shape on                   
both sides of the road. The more points that lie along this line, the better the detection of the                   
potential line will be. The Hough Transform is used to detect the lines within the grid.  
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Figure 4.1: Top view of 3D LiDAR Point Cloud 

 
The Hough Transform functions by detecting points within the plane that lie along a line. The                
Hough Transform operates similarly to a Fourier transform, where it transforms the cartesian             
space into a frequency space. The cartesian space consists of the familiar (x, y) points and the                 
frequency space (known as the Hough parametric space) consists of (m, b) points             
corresponding to a linear equation as seen below​. 
 

 mx b  y =  +                                        ​(1) 
 
Each point in the cartesian space, as viewed in ​Figure 4.1​, is joined to another point in the                  
cartesian space. An (m, b) point corresponding to the line between two (x, y) points is created in                  
the parametric space, shown in ​Figure 4.2 below. If multiple (x, y) points lie along the same (m,                  
b) line, then there will be a greater density of the same (m, b) point in the parametric space. A                    
curb should be a straight line, so the parametric space will have a large density of particular (m,                  
b) points. Referring to ​Figure 4.2​, any point that would lie on the line equation is converted to a                   
single (m, b) point in the parametric space. These (m, b) points will correspond to the linear                 
segments found within the 2D plane [32]. If the number of (m, b) values is greater than a                  
threshold, then this defines a pronounced line within the 2D plane. 

 
Figure 4.2: Cartesian Space to Hough Parameter Space [32] 
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Once a list of potential (m, b) points is determined, it is important to determine which points                 
correspond to the curbs, rather than environmental obstacles or noise. Threshold values are             
defined for setting the minimal density of an (m, b) point. If this minimal density is reached, then                  
it can be assumed that the (m, b) values form a well defined line. This line will then be further                    
validated to determine how probable it is to be a curb. For example, a vehicle obstacle will yield                  
a short line, so the probability of a longer line being a curb is greater. There may also be                   
discontinuities in the detected line, due to LiDAR error and deviations in the intensity of the curb.                 
The curb may be shorter in particular segments, or the LiDAR may have noise. Therefore a                
minimum distance between series of cartesian points lying on the same (m, b) line must be                
defined. This will ensure that the clusters of points in the cartesian space correspond to a curb,                 
rather than several vehicles travelling in the same direction or something else with a similar               
orientation. If several vehicles are travelling in the same direction, then the edges of the vehicles                
may be detected and there would be a disjointed series of cartesian points which do not                
correspond to a curb. Therefore the minimum distance will prevent this (m, b) line from being                
classified as a curb [31].  
 
Once potential curb lines are detected, verification techniques can then be used to increase the               
confidence of the line being a curb. On a straight road, curb lines are parallel, so if two (m, b)                    
values are determined to be parallel (having the same m value) then there is a greater                
probability of these lines being curbs. As seen in ​Figure 4.3 below, several potential curb lines                
were detected in red and the actual curbs were detected in green. The detected curbs were                
determined to be parallel and contained a greater number of points than the other potential curb                
lines. Therefore, there is a greater confidence that these lines correspond to the curbs. Once               
the curbs are detected, the (m, b) values will be used to define the location of the curbs 
 

 
Figure 4.3: LiDAR top view with potential and classified curb lines 
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The Hough Transform approach was not used in the final method due to its restriction of being                 
primarily effective when linear curbs are present. The Hough Transform can be extended to              
detect curved curbs but this poses complications as the LiDAR data itself is circular in nature.                
As is apparent from ​Figure 4.3​, the LiDAR data consists of a large number of concentric circles.                 
It is therefore extremely challenging to be able to distinguish a curved curb from the LiDAR                
points themselves. Therefore, the application to curved curbs may not be feasible using LiDAR.              
The Hough Transform also has the caveat of detecting potential lines that are not curbs as                
many linear shapes exist in the environment. It is susceptible to noise as points must lie along                 
the (m, b) line with minimal noise to be deemed as being part of the line. Further research into                   
the application of Hough Transforms should be done, and their application in curb detection is               
promising. 

4.2 Fourier Transforms for Point Density-Based Feature 
Extraction 
 
The Fourier transform is a tool used to convert a signal from the time or space domain into the                   
frequency domain. In doing so, it decomposes the signal into all of the respective frequencies               
which comprise it. The structure of the signal in time/space domain is directly related to its                
structure in the frequency domain. If a signal is transformed into the frequency domain, an               
inverse Fourier transform can be used to transform the signal back to its original time/space               
domain structure. A signal transformed into the frequency domain allows identification of            
qualities such as its dominant frequencies and specific features found in the time/space domain              
[33]. 
 
3D LiDAR data from an automobile contains a lot of useless information when being used               
specifically for the purpose of an ADAS system. In the case of curb detection, the curbs                
themselves make up only a very small portion of each LiDAR snapshot. When on an open road,                 
the majority of the data points are part of the road, trees/greenery or objects such as vehicles.                 
This information is not necessarily required for the task of curb detection. 
 
This method is an attempt to use the Fourier transform to decompose the LiDAR data into its                 
frequency components and identify specific time/space domain characteristics (such as          
continuous curbs) from them. The Fourier transform is most used in 2 dimensions, and since the                
LiDAR data is 3D it will require dimensionality reduction to be processed effectively. 
 
To effectively explain how the dimensionality reduction was done, the coordinate system for 3D              
LiDAR data must first be understood. As explained in ​Section 3.2​, the direction looking out the                
front of the vehicle is the y-axis. Perpendicular to that on the horizontal plane is the x-axis.                 
Finally the z-axis represents the vertical change. The particular 2D plane we are interested in               
reducing our 3D data to is the x-z plane. Ideally, the x-z plane of a road would show the curb on                     
the left side of the road, then a step down representing the start of the road, and finally a step                    
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back up to represent the curb on the other side of the road. These two steps are represented in                   
the space domain within this data and will also have a distinct representation when transformed               
into the Frequency domain. The goal was to transform this spatial data into the frequency               
domain and confirm the presence of curbs through their frequency domain representation. An             
example of ascending and descending unit step functions and their Fourier transforms are             
shown in ​Figure 4.4​. 
 

 
Figure 4.4: Rising/Falling Step Function and their Fourier Transforms 

 
Dimensionality reduction on the 3D LiDAR data was done in 2 different ways. The first, was                
done by averaging all points across the y-axis to create an x-z plane. The second was done by                  
using a sliding window average to examine a single slice of the y-axis at a time in effort to                   
reduce noise created when averaging the entire y-axis into one x-z plane. With the first method,                
an entire 3D LiDAR snapshot is averaged across the y-axis, effectively removing the y              
dimension. This leaves an x-z plane which represents the average LiDAR structure over the              
y-axis.  
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By using the Fourier transform to represent this data in the frequency domain, it was expected                
to see a specific pattern that confirmed the presence of curbs. The result showed very little of                 
what was expected. Because of the presence of noise and spatial variation in the data, neither                
the first or second methods of dimensionality reduction and transformation presented any            
patterns that confirmed the presence of curbs. This resulted in Fourier transforms not being              
used for our methods.  

4.3 Road Surface Filter 
LiDAR data from a road going vehicle is inherently going to contain large quantities of flat                
surfaces (i.e. road and ground). The curbs of a road can be thought of as the intersection of two                   
planes (flat surfaces), that of the road and that of the ground beside the road. The ground                 
beside the road is typically at a slightly higher elevation than the road which creates the curb                 
when the two intersect. By using a 3D point cloud edge detection method, these intersections               
can be extracted from the rest of the data. Using the road surface filter, the objective is to                  
remove the flat planes within the LiDAR data, leaving only the curb edges and objects. This                
result is shown in ​Figure 4.5​. 
 
A measurement called surface variation, allows determining if a group of cartesian points             
represent a plane or an edge (intersection of planes). This measurement can be used on groups                
of points within the LiDAR data to determine whether they are part of a flat surface or an edge                   
and remove them if necessary. The surface variation equation divides the smallest eigenvalue             
of the 3D covariance matrix with the sum of all 3 eigenvalues. If the result is close to zero, then                    
the group of points is representative of a flat plane. Otherwise, they represent an edge [34]. The                 
3 eigenvalues obey the following: λ​0​ < λ​1​ < λ​2​. 
 

                                                   (2) 
 
To examine the entire point cloud for edges, the K-Nearest-Neighbours (kNN) algorithm was             
used. For each point in the point cloud, its K-Nearest-Neighbours are examined and the 3D               
covariance matrix is extracted [35]. From this covariance matrix, the 3 eigenvalues are             
computed and the surface variation of this group can be found using equation 2 above. If the                 
surface variation is close to zero, it is classified as a flat surface and only the initial query point                   
is removed, not its neighbours. If the surface variation is not close to zero, the point is not                  
removed. This process results in a LiDAR point cloud which consists entirely of edges and no                
flat surfaces. By removing flat surfaces from the LiDAR data, other curb detection methods will               
have less points to process which will make them more efficient. 
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Figure 4.5: LiDAR Point Cloud before and after Road Surface Filter 
 
The kNN algorithm is extremely useful for this method as it can be used to help assess the                  
immediate neighbours of a point to determine whether it is part of a flat surface or an edge. The                   
disadvantage of this method is the high complexity of the kNN algorithm. The kNN algorithm has                
a high complexity due to examining every point in the point cloud along with their k nearest                 
neighbours. This is a detriment to the real time task of curb detection and therefore the Road                 
Surface Filter was not used in the final detection method. If a more efficient algorithm for                
examining points and their spatial locality could be used, this method would be much more               
suited for curb detection.  
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Chapter 5: Sliding Window Approaches 
Convolutional Neural Networks employ learned filters with the convolution operator to transform            
an input image to an output set of values, usually consisting in a ‘volume’ of outputs                
corresponding to the size of the input and the number of nodes in a layer [36] . This is the root                     5

of the idea of a sliding window: an operation occuring in a sliding or moving fashion across a                  
data space, encompassing multiple data points at once. Convolutional filters can be taught to              
detect edges in an image, to detect shapes, and more [36]. This was the motivation towards                
sliding windows as a curb detection technique. If a filter could be created to detect curbs, this                 
would allow for a one-pass curb detection algorithm. This project opted not to use machine               
learning and CNNs, but to instead research methods of curb detection using the general idea of                
bounded inputs and sliding windows.  
 
In [26], voxels were introduced as a bounding method. The bounding criteria for a voxel is the                 
physical space taken by the bounding box. A voxel-based approach maintains the same volume              
per voxel, meaning that the number of points per voxel differ depending on the distance from                
the vehicle . Voxels are also generally rectangular prisms, meaning that they do not effectively              6

capture the spread of LiDAR points around a vehicle. The benefit of voxels, however, is that                
they provide a set space over which the LiDAR data can be analyzed. [26] used this to calculate                  
the normal vector of the plane of points in the voxel and to generate other criteria such as height                   
difference and gradient. To apply a sliding window, voxels wouldn't work. The sliding window              
approach requires the same number of points in the filter as in the selected data. It would be                  
impractical to create a new filter for each voxel and the number of points contained within. So a                  
new bounding box was conceived which would retain the same number of points while moving               
over different point densities. This was dubbed the polar bounding box. The methods presented              
in this chapter make use of polar bounding boxes in various ways. Each method iterates over                
the point cloud with a fixed-size bounding box, completing various calculations with the aim of               
detecting the curb directly.  
 

5.1 Height Variation 
Height variation uses a basic approach to detect curbs: in any given bounding box, iterate from                
the points nearest to the car, to the points furthest away, and calculate the height difference                
between points in adjacent laser lines. If any set of points exhibit a height difference within those                 
levels considered for curbs (between 5 and 20 cm), then these points are considered curb               
points . ​Figure 5.1 graphs the points in a bounding box to the right of the vehicle, extending 12                  7

meters to the right of the vehicle, a meter in the direction of travel centered to the vehicle, and                   

5 A filter is moved across the pixels in an image to create this output. 
6 See ​Section 3.1​. 
7 This check was completed between multiple laser lines, not just directly adjacent lines.  
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with no vertical bound (i.e., ). The points are projected to the     0, 12] m; y − .5, 0.5] m  x∈ [   ∈ [ 0         
x-z axis for ease of viewing. 
 

 
Figure 5.1: Points within a bounding box with y-axis collapsed 

 
The red circle in ​Figure 5.1 is noise from points hitting the top of the vehicle, these points can                   
be ignored. The green circle, however, clearly illustrates the curb rising from a ground level of                
about -1.7 meters (relative to the LiDAR sensor height), to about -1.5 meters. The height               
variation method was developed with this example in mind. The idea being that every curb               
would share similar characteristics and would therefore be detectable by the height variation             
relative to the road. In practice, most curbs and road environments are not as perfect as the                 
figure would suggest. The height variation method would, for example, falsely detect grass             
between the curb and the sidewalk as a curb, without so much as a single point detected on the                   
true curb. Other situations like a sloping road or a sloping ground section outside of the road                 
area would be detected as a curb entirely, or in addition to the true curb. Attempts were made to                   
mitigate the errors, such as ensuring that a small distance on the ground plane actually               
corresponded with a curb-like height increase. This attempt was better able to detect true curbs               
rather than slopes, but failed to distinguish curbs from trees and grass. No other attempts were                
made to adjust the method.  
 
This method showed promise in initial tests as it was capable of detecting nicely defined curbs                
in low-noise environments. In noisy environments, with non-ideal curb and road conditions, the             
method failed to adequately detect curbs. Some important lessons were learned from this             
method, namely, that the road environment is not perfect and that simple methods that just               
iterate over the bounding box, completing basic mathematics, would be ineffective. Thus, more             
complicated methods were examined, using ideal curbs, and a true sliding-window approach.  
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5.2 Mean Squared Error-Based Curb Detection 
An initial approach to curb detection was the comparison of an idealized curb model to real point                 
cloud data. The intuition was that curbs have a distinct shape that differentiate themselves from               
other objects in the point cloud. Comparing sections of the point cloud to an idealized curb                
model was a promising approach to detect curbs and remove other objects in the point cloud.                
To do this, an idealized curb model was created based on the structure of the point cloud data.                  
The idealized model was converted into a matrix format based on the point cloud matrix               
representation presented in ​Section 3.3. The idealized model contains road space, sharp            
elevation change of 0.2m to represent the curb, and space behind the curb for 0.2m. ​Figure 5.2                 
showcases a small segment from the idealized curb model. ​Figure 5.2 shows the road in blue,                
the curb as a sharp elevation with varying change of colours, and the medium following the curb                 
in red. This can be thought of as an intersection between three planes, first is the road in blue,                   
then the curb, and finally the medium following the curb in red. 
 
 

 
Figure 5.2: Ideal representation of curbs 

 
For curb detection on real point cloud data, a small section that represents the idealized curb                
was extracted from the idealized model. This section is a sub-matrix of the idealized curb model                
matrix. The sub-matrix is defined as follows: 

● Given a laser ID , bounded by the number of lasers , n N  [1, N ]n ∈    
● Given a point number , bounded by the number of points ,  m M  [1, M ]  m ∈    
● Where each element of the matrix ​T​ is indexed as the vector tnm  

 

 
The above matrix contains ​N laser lines with ​M points per laser. Matrix ​T was compared against                 
sections of matrix ​X ​which was described in ​Section 3.3​ using a sliding window approach. 
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In order to detect curbs in real point cloud data using the idealized subsection, a metric that                 
compared both the idealized subsection and the real point cloud data was required. The Mean               
Squared Error (MSE) takes the average sum of difference squared between each entry of the               
sub matrix and the real point cloud data matrix. The following formula is used to compute the                 
MSE: 
 

                        ​ (3) 
 
Where is a point in the ​X matrix that represents the full point cloud and is a point in the xnm                tnm       
matrix ​T that represents the idealized curb section. Based on experiments, it was found that               
comparing only the ​z values of points resulted in better detection. The MSE metric gives a value                 
that represents the similarity between the two matrices. A section of the real data that contains a                 
curb is expected to have a high similarity to the idealized curb section. Therefore the lower the                 
MSE value is, the more similar the matrices are and the more probable the current section is a                  
curb. ​Figure 5.3​ below showcases the results of the MSE method on the ideal data. 
 

 
Figure 5.3: Ideal data results 

 
As shown in ​Figure 5.3​, this method shows promising results on idealized data, however there               
are critical limitations that reduce the effectiveness of this method on real data. First off, only a                 
single side of the curb can be detected using one ideal curb model. The other curb side would                  
need a seperate curb model and would require two passes through the point cloud to detect                
both sides of the curb. Second, the density of points in the point cloud varies and decreases the                  
further the points are from the vehicle. The idealized curb section does not take this into account                 
and assumes constant point densities in the point cloud. Third, the point cloud contains noise               
that might distort the shape of the curb. Fourth, there are several different types of curbs that                 
vary in height, therefore a single curb model will not capture the similarities of all types of curbs.                  
Figure 5.4​ below shows the detection output using the MSE method for the snapshot. 
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Figure 5.4: MSE method results on real point cloud data 

 
As shown in ​Figure 5.4​, it was found that this approach is not effective at detecting curbs and is                   
prone to many false positives on real point cloud data. Based on the limitations discussed               
previously, it is understandable that this method has poor detection of curbs. This experiment              
also showcased that many other objects in the point cloud have relatively similar characteristics              
which makes a similarity method between ideal data and real data difficult. Due to this, the                
method produced many false positives in the real data with very few correct detection of curbs.                
For the above reasons, the MSE approach was not included in the final method.  

5.3 Principal Component Analysis-Based Normal Vector 
Extraction 
Principal Component Analysis-Based Normal Vector Extraction is an approach for curb           
detection that uses the normal vector to determine the likelihood a set of points represent a curb                 
[26]. A normal vector is a vector that is orthogonal to the plane of points. Curbs are expected to                   
have a strong normal vector component in the X direction (orthogonal to the direction of travel)                
and a weak component in the Z direction (height). Based on these criterias, normal vectors can                
be computed on the real point cloud data using a sliding window approach. Based on previous                
experiments, it was found that a bounding box of 2 laser lines and 4 points per laser gave the                   
best results.  
 
PCA computes vectors that correspond to the variance of the dataset. ​Figure 5.5 below              
showcases two vectors in red that correspond to the variance of the blue dataset. Each vector in                 
red is a principal component vector. The normal vector is the principal component vector with               
the smallest eigenvalue pair.  
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Figure 5.5: Principle Component Vectors 

 
To compute the normal vector of a set of points, eigenvalue decomposition must be done on the                 
covariance matrix of the points. Therefore, the first step in the process is to compute the                
covariance matrix. The covariance matrix is a square matrix that gives the covariance between              
each random variable. In this case the covariance matrix is 3x3 where the random variables are                
the coordinate vector of each point which is . First, the mean vector of the set        x , x , x ]x = [ (1)  (2)  (3)         
of points is computed by averaging each component of the coordinate vector. Second, the              
covariance matrix is computed using the formula below. Where ​N is the total amount of points in                 
a bounding box, is a coordinate vector for a point, and is the mean vector.xi x  
 

                               ​(4)ov (x )C =  1
N ∑

N

n=1
i − x · (x )i − x  

T  

 
Third, eigenvalue decomposition must be computed to retrieve the smallest eigenvalue and            
vector pair. The eigenvector with the smallest magnitude eigenvalue will be the normal vector. A               
numerical method called Power Method was used to calculate the smallest eigenvalue and             
vector pair [37]. The Power Method is used to find the dominant eigenvalue and eigenvector               
pair, so the Power Method needed to be modified. To find the smallest eigenvalue and vector                
pair, the dominant one is found first and then is subtracted from the diagonal of the covariance                 
matrix. The covariance matrix is negated and the Power Method is applied again. The results               
from the Power Method now provide the smallest eigenvalue and vector pair. 
 
The normal vector is the eigenvector that corresponds to the smallest eigenvalue. Using the              
normal vector, subsections of the real point cloud matrix can be ignored. Subsections with a               
strong normal vector component in the Z (height) directions are most likely road points or other                
noisy points and can be removed. Subsections with a strong normal vector component in the X                
direction are most likely curbs and remain. A threshold value was experimentally set for the Z                
and X normal vector components.  
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This method worked better than the MSE method described in ​Section 5.2​. This method was               
able to remove a significant amount of road and noise points, leaving mostly points that               
resemble the curb. However, some limitations of the method were noticeable and limited the              
total curb detection possibilities. First off, the locality of points for two adjacent laser lines varies                
based on the surface the LiDAR detects. For instance, a sharp elevation will introduce a large                
variation in the distance between adjacent points of a laser line. This means that the sliding                
window approach will not always retrieve points that are adjacent to each other. This is a very                 
large limitation as the method expects tight locality of points. Second, noise on the curbs               
themselves may affect the normal vector calculations and result in a strong normal vector              
component in the Z direction. It was found that this method is not as resilient to noise compared                  
to other methods. Third, other methods were found to have better road and noise point removal                
than this method. 
 
The Principal Component Analysis-Based Normal Vector Extraction method was not used as            
the main road and noise removal method. However this method is very promising in              
categorizing segments and clusters of the point cloud based on the normal vector. It is known                
that curb segments will have a strong normal vector component in the X direction and a weak                 
component in the Z direction. Through better clustering and grouping of points, this method              
becomes very promising and is used in the final curb detection method. 
 
Figure 5.6 below showcases the results of the PCA method onto the point cloud data. Curbs                
are shown to the left and right of the middle halo. The curb resolution is significantly better than                  
the method described in ​Section 5.2​. It is also shown that road points are removed from the                 
point cloud. While curb detection is good, ​Section 6 details a stronger curb detection algorithm               
with better detection and less false positives. 

 
Figure 5.6: Results from PCA on point cloud 
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Chapter 6: Curb Detection Method 
The methods examined thus far have failed as effective curb detection algorithms. It was shown               
in ​Sections 4.1 ​and ​4.2 that using transforms as a method of curb detection failed due to the                  
over-reliance on the algorithm without employing filtering steps to remove non-curb points.            
Section 4.3 showed that an edge detection algorithm was only partially effective in removing              
non-curb points. These results together suggest that no single algorithm should be relied on to               
perform curb detection. A method like the Hough transform might certainly have worked given              
sufficient constraints (straight, continuous curb), under a scenario where many non-curb points            
had already been removed. The Hough transform has already been proven capable in the              
camera-based methods described in ​Chapter 3​, and there is no reason to doubt its capabilities               
in LiDAR point clouds. ​Section 5 examined sliding window approaches and how, when             
considering multiple laser lines, they failed to detect curbs or to adequately remove points from               
the point cloud. Sliding windows were adapted from the ideas of CNNs, where a learned filter is                 
convolved over an image or a data-space. This idea is still useful for curb detection, but filters                 
for single curb lines must be developed to avoid the issues presented above. Overall, the               
experiments conducted for the methods in ​Chapter 4 and ​5 were useful and they informed the                
development of the curb detection method. For instance, sliding windows and PCA are still              
used, be it in different ways. These experiments were, for the most part, inspired by the papers                 
presented in ​Chapter 3​. The papers introduced many useful concepts that were, along with              
novel methods, instrumental in the development of the curb detection and road detection             
methods.  
 
This chapter shall henceforth describe the method of curb detection developed in the course of               
this project. As described in ​Chapter 3​, LiDAR is an effective sensor for environmental              
perception due to its resilience to noise. Many of the best-performing road detection algorithms              
employed multiple sensors to detect the road, using sensor fusion techniques to mutually detect              
and corroborate the road. This idea was explored, but ultimately it was decided that the project                
would explore detection through LiDAR solely . As such, the curb detection method was             8

designed to employ the filtering methodology: successively remove points until a curb can be              
confidently extracted. The extraction methodology is also important to highlight. As was made             
clear in the analysis of [25], a clustering and regression step prior to curb extraction is required                 
for higher resilience against false positives. Furthermore, it was discovered that a new detection              
mechanism was required to more effectively report the curb location. With these incites, the curb               
detection method could be designed. The rest of this chapter proceeds as follows: First, a               
preprocessing step removes duplicate points and performs basic road segmentation. Then, the            
filtering steps are described. Next, clustering is used to group similar points. Then, the point               
cloud is de-noised, segmented, and the segments are grouped to produce the final detection              
result. Each step of the algorithm is analyzed to ensure computational complexity remains             

8 There are a number of reasons why the scope was restricted, namely, the difficulty of fusing sensors                  
coherently to produce a more effective detection, and a restriction from QNX, who sponsored our project. 
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reasonably low; after all, point clouds are large data structures so it is desirable to avoid large                 
complexities. Once a set of segments is grouped, a confidence metric is used to assign a                
probability of detection. Finally, real-time speedup methods are described.  

6.1 Preprocessing 
In the first step of the curb detection algorithm, the raw LiDAR data received from the HDL64E                 
sensor is processed and converted to a format that is easier to work with. All of the vehicle’s                  
sensory data for a given time frame is received in the form of a snapshot which includes the                  
LiDAR point cloud. The LiDAR point cloud is then extracted from the snapshot. The HDL64E               
LiDAR sensor used for this project was configured with the vehicle’s computer system, every              
point in the cloud is duplicated and therefore these duplicates must be removed as they are not                 
necessary and increase computation time. This is done by iterating over the point cloud and               
ignoring every second grouping of 64 points per their laser ID. In this step, the size of the data is                    
reduced from 233,088 to 116,544 points. The data points are then converted from spherical              
coordinates to cartesian coordinates using the following three equations to obtain their x, y, and               
z values: 

 
 d cos(Ei) sin(a)  x =  *  *                                ​(5) 

 d sin(Ei)  y =  *  + h                            ​(6) 
 d cos(Ei) cos(a)  z =  *  *  *  − 1    ​(7) 

 
where ​d is the distance of the point from the vehicle, ​Ei is the elevation height of the respective                   
laser ID ​i​, ​a is the azimuth angle from the vehicle, and ​h is the height offset from the LiDAR                    
sensor to the ground. Next, a height filter is applied to the point cloud to remove all points above                   
a height of 0.3m above ground level. These points are not necessary as they are far above the                  
0.2m region where curbs are expected to be found as described in ​Section 3.2​. A leeway of                 
0.1m is thus allocated for robustness. This step removes several thousand points from the point               
cloud. Finally, the data structure described in ​Section 3.3 is initialized and each of its rows are                 
populated with the cartesian points of the corresponding laser ID. 

6.2 Filtering 
The task of extracting road curbs from a point cloud is rendered difficult by the size of the point                   
cloud and noise. The process of filtering is used to remove unwanted points in the data on the                  
assumption that they share different properties from the curb points. The filtering methods             
detailed in this section consider noise to be any LiDAR points that are distant, random, or                
otherwise highly variant from the expected curb and road-area characteristics. The filtering            
method, unlike the transforms described in ​Chapter 4​, operates on the basis of conditional              
statements. In other words, after performing arithmetic operations, points are removed from the             
point cloud based on whether the result of the operations exceeds predetermined thresholds.             
The first step of the filtering method, described in 6.2.1, is the Similarity Filter. In this step, the                  
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similarity between adjacent points on the same laser line is evaluated based on the angle               
between points and height differences. This step is effective for reducing most of the noise in                
the point cloud; however, it fails to detect curb points that are directly adjacent to the vehicle.                 
The second step, described in 6.2.2, is the Augmented Similarity Filter which is used to               
compliment the Similarity Filter in areas where it fails. This step uses PCA to maintain resolution                
of the curb near the vehicle. Together, these steps reduce the point cloud to the candidate curb                 
points on which further analysis is conducted for extraction. The filtering step yields a significant               
reduction in the size of the point cloud down to approximately 4000-6000 points (96%              
reduction). 

6.2.1 Similarity Filter 
The similarity filter is the first filtering step of the curb detection algorithm. According to the                
filtering methodology, this step should remove non-curb points such as noise, greenery, the             
road, other cars, etc; while maintaining as many on-curb points as possible. The papers              
presented in ​Chapter 3 termed this process “candidate point extraction” with the specific goal of               
identifying curb points by searching for curb-like features in the point cloud. These features              
include: the height difference, the gradient, the normal vector, and the angle between adjacent              
sets of points [23, 25, 26]. The similarity filter uses two features to distinguish curb points: 1) the                  
angle between adjacent points, and 2) the height difference between adjacent points. The             
former is directly inspired by [23] and [25], but uses a different approach to calculate the angle.                 
The latter is a novel technique which, when used with the former, allows for effective               
differentiation of curb points. In unison, these features allow for the identification of ground              
points and noise points versus what is expected from curb points.  
 
The similarity filter was designed based on real LiDAR data, and the features that were               
observed of curbs, the ground, and noise. Upon analyzing points on the road and curb, it                
became clear that adjacent road points on the same laser line had small height variations not                
exceeding 1 cm, while curb points had height variations between 3 cm and 5 cm. This                
observation could be used to differentiate points on the road versus points on the curb.               
However, many noise points (e.g. shrubs, grass, cars), would often exhibit the same height              
variation as a curb, so this feature, the height variation, was effective, but not sufficient, for curb                 
extraction. Further analysis revealed the angle between adjacent curb points on the same laser              
line was around 180​o​; the same held true for adjacent road points on the same laser line. Noise,                  
however, would often exhibit large differences in angle between adjacent points. Using these             
qualities, the curb points could be differentiated from the road and noise points.  
 
The first step in computing similarity of adjacent points is evaluating the cosine of the angle,                
denoted by ​⍺​, between two vectors that separate five adjacent points on the same laser line.                
This will yield a value between -1 and 1, however, the absolute value is taken as the orientation                  
of the angle is irrelevant. The angle is calculated based on all three components (i.e., x, y, and                  
z) of the points. This is different from [23] and [25], where the angle is calculated based only on                   
the x- and y-components, on a variable number of points depending on the vertical angle of the                 
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laser. ​Figure 6.1 illustrates the calculation of the angle. Let a, b, c, d, and e, be the five                   
three-dimensional adjacent points on the same laser line in the point cloud. The process of               
computing the similarity in angle, is broken down into three steps below: 

1) Compute a new middle point between ​ab ​and ​de​, yielding points ​f ​and ​g​ respectively, 
2) Compute the direction vectors v1 from point ​g ​to point ​c ​and v2 from point ​g ​to point ​c​, 
3) Compute​ ​the cosine of the angle between vectors v1 and v2 using the following formula: 

 

                            ​(8)os(⍺)   c = v1 · v2
v1  v2|| || || ||  

 
where v1 ​· ​v2 is the dot product between both vectors and ||v|| is the euclidean distance                 
of the vector. 

 
Figure 6.1: Cosine Similarity Visualization 

 
To determine similarity, the cosine of the angle is used in conjunction with the height difference                
of the adjacent points. The groupings of five points that yield a cosine greater than 0.95 and a                  
height difference between v1 and v2 that is greater than 1 cm but less than 5 cm are considered                   
to be similar and are kept in the point cloud. All other groupings of five points that do not adhere                    
to these ratios are discarded. Once this operation is completed, the process is repeated for the                
next group of five adjacent points on the laser line in a sliding-window fashion to avoid overlaps                 
in processing the points. It is then again repeated for each of the 64 laser lines in the point                   
cloud. The defined numerical ratios were picked through observation of the trends in the LiDAR               
data as well as through experimentation. They have provided desired results in filtering noise in               
the data. It was however noticed that points on the curb near the vehicle were involuntarily                
removed by the similarity filter due to their almost negligible height difference. ​Figure 6.2 below               
shows the LiDAR point cloud before and after applying the Similarity Filter: 
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a) b) 

 
Figure 6.2: LiDAR point cloud before and after the Similarity Filter: a) The untouched LiDAR point 

cloud. b) the LiDAR point cloud after the similarity filter. 
 

It is worth noting that in ​Figure 6.2 b)​, most of the road, sidewalk, LiDAR halo, and trees have                   
been eliminated from the data. On the other hand, parts of the curb directly adjacent to the                 
vehicles have also been removed. For this reason, the similarity filter was combined with a               
second filter to retain the curb points near the vehicle. 
 

6.2.2 Augmented Similarity Filter 
The similarity filter is unable to detect curb points directly to the sides of the vehicle (left and                  
right sides extending about 5m centered on the y-axis). This is due to the fact there is no height                   
difference between adjacent points on curbs directly to the side of the vehicle. To fix this issue,                 
Principal Component Analysis (PCA) was used to detect curbs beside the vehicle. As described              
in ​Section 5.3​, PCA is used to extract the normal vector from a set of points. A curb is expected                    
to have a strong normal vector component in the X direction, and a weak normal vector                
component in the Z direction. Although the PCA method described in ​Section 5.3 was not used                
directly in the curb detection method, ​Figure 5.5 ​shows strong curb detection for curbs beside               
the vehicle. This is due to the high density of points near the vehicle. A sliding window approach                  
is then sufficient for detecting curbs directly to the side of the vehicle.  
 
An approach similar to ​Section 5.3 was then created. Using a bounding box of 2 lasers and 8                  
points per laser, PCA was computed using a sliding window approach on the point cloud. The                
main detection of the augmented similarity filter are the curbs to the side of the vehicle,                
therefore PCA does not need to be computed on the entire point cloud. It was experimentally                
found that curbs directly beside the vehicle were captured between 0 and 30 laser line ids.                
Therefore the augmented similarity filter is computed for half the point cloud.  
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The augmented similarity filter is run independently from the similarity filter and results are              
combined once both filters finish. This allows for parallelism and further speedup. For each              
window in the point cloud, the normal vector is computed and compared to a threshold. If the x                  
normal vector component is above T​X and the z normal vector component is below T​Z​, then the                 
points in the window are saved. ​Figure 6.3 showcases the combined results of the similarity               
filter and the augmented similarity filter.  
 

 
Figure 6.3: LiDAR point cloud before and after the Augmented Similarity Filter: a) The untouched 
LiDAR point cloud. b) the LiDAR point cloud after the similarity and augmented similarity filters. 

 
It is worth noting that in ​Figure 6.3 b) the curb points directly adjacent to the vehicle remain,                  
however extra noise is introduced on the road in the vicinity of the car. The extra curb points                  
lead to better detection results for later steps, but the extra noise has a negative effect, and has                  
the potential to increase miss-detection.  

6.3 Clustering 
Clustering is the process of divvying data points from a large data set into subsets based on                 
similarity of shared properties. Ideally, all data points within one subset are more similar to one                
another than they are to other points in the point cloud. In regards to a LiDAR point cloud,                  
similarity of points can be evaluated on the basis of point locality and point density. Clustering                
can thus be used to group neighboring points in 3D space based on each point’s x, y, and z                   
coordinates. By using point locality as a clustering property, the point cloud becomes structured              
into groups of points representing different entities. Clustering is therefore essential for grouping             
and classifying the curb points as a separate entity from the rest of the point cloud. This then                  
allows for extraction and further analysis of these curb points. 
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The research papers presented in ​Chapter 3 proposed using a variation of Density Based              
Spatial Clustering of Application with Noise (DBSCAN) for clustering LiDAR points [23].            
DBSCAN is a density-based clustering algorithm that typically uses the euclidean distance            
between neighboring points and the density of nearby points to group them into clusters. It is                
also capable of identifying outliers in the data that do not fit into any cluster. DBSCAN differs                 
from other clustering methods such as distance-based algorithms in multiple ways. For one, like              
distance-based clustering algorithms, DBSCAN evaluates the distance between neighbouring         
points, but it also evaluates the density of nearby points as well [38]. Distance-based algorithms               
such as K-Means attempt to divide the data into a pre-defined number of clusters while               
DBSCAN does not require the number of clusters to be known ahead of time [39]. Additionally,                
DBSCAN is more effective at identifying shapes and linearly-separable clusters. ​Figure 6.4 and             
6.5​ illustrate these differences. 
  

 
Figure 6.4: Distance-based K-Means (k=2) (left) vs density-based DBSCAN (right) [40] 

 
In ​Figure 6.4​, it is evident that DBSCAN is better at identifying shapes and non-linearly               
separable clusters even when the number of clusters is unknown ahead of time. ​Figure 6.5               
shows how DBSCAN is able to identify clusters of varying point density. 
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Figure 6.5: DBSCAN Clustering [41] 

 
In Figure 6.5​, the DBSCAN algorithm computed five clusters identified by the colours: dark blue,               
yellow, grey, red, and light blue. It is visible that each cluster has a different point density, and                  
shape. The outliers are illustrated as black points that do not fit into any of the clusters.  
 
Given that the LiDAR point clouds captured from the vehicle are subject to large variability due                
to the vehicle’s changing environment, it is impossible to predefine the number of clusters in the                
data. Each captured point cloud in itself has a large variation in point densities. For example,                
points on the road or the curb near the vehicle are more dense than points further from the                  
vehicle. The point clouds also contain a large amount of distant outlying data points that would                
ideally be removed. For these reasons, the density-based DBSCAN algorithm was selected            
over other algorithms to cluster the LiDAR point cloud. 
 
The DBSCAN algorithm has two parameters. The first parameter, denoted ​epsilon​, is the             
minimum distance from one point to another for them to be considered in the same cluster. The                 
second parameter, denoted ​minPts​, is the minimum number of points required to form a cluster.               
The algorithm begins by determining all core points in the data set. These are points that are                 
surrounded by ​minPts ​or more points that fall within the ​epsilon ​range. Next, for each core point,                 
border points are identified. These are points that have less than ​minPts ​points within ​epsilon               
but fall within ​epsilon ​of a core point. All core points that fall within the ​epsilon ​of another core                   
point are grouped together into a cluster. All border points are added to the cluster of their                 
closest core point. All other points that do not fall within the ​epsilon range of a core point are                   
considered to be noise. This is illustrated in ​Figure 6.6​. 
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Figure 6.6: DBSCAN core, border, and noise point identification [38] 

 
 

After experimentation, the ​epsilon ​value was chosen to be 0.5 and ​minPts ​was chosen to be 5.                 
These values yielded desirable results in clustering the point cloud as shown in ​Figure 6.7               
below: 
 

 
Figure 6.7: LiDAR point cloud before (left) and after (right) DBSCAN clustering 
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In ​Figure 6.7​, the DBSCAN clusters are shown by color. It is visible that points in linear road                  
curb segments have been clustered together. Now that the point cloud and the curb points have                
been effectively clustered, further analysis is possible on individual groupings of points. 
 
While DBSCAN proved effective for clustering the point cloud, it was noticed that at further               
distances from the vehicle, the points that formed the curb were not properly clustered together.               
Rather than one linear cluster for the curb line, the algorithm split the curb into multiple short line                  
clusters. This was due to the density of points in the point cloud decreasing as their distance                 
from the vehicle increases. In other words, at further distances from the vehicle, curb lines had a                 
varying point density. DBSCAN thus fell short in this aspect as DBSCAN assumes clusters to be                
of uniform density within themselves. For this reason, the Hierarchical DBSCAN (HDBSCAN)            
was investigated. HDBSCAN, like DBSCAN, is a density based clustering algorithm however, it             
differs in that HDBSCAN supports varying in-cluster density. HDBSCAN also does not require a              
set ​eps ​value as it varies for each cluster. 
 

6.4 Denoise 
Once the point cloud is clustered, further noise reduction is required to achieve effective curb               
detection with few false positives. The PCA-based normal vector extraction of ​Section 5.3 is              
reproduced here to denoise the clusters. The normal vector is used to classify a cluster of points                 
as curb candidates based on the magnitude of the X and Z components. For a cluster to be                  
considered as a curb candidate cluster, it is expected that it will have a strong normal vector                 
component in the X direction, and a weak normal vector component in the Z direction. Several                
limitations for PCA with the sliding window approach were noted in ​Section 5.3​, however, the               
preceding clustering step removes these limitations. First off, point locality is maintained in each              
cluster which is crucial for PCA. It is less likely for normal vectors to be calculated between far                  
away points, thus, normal vectors are able to convey more accurate results. Additionally, the              
clustering of the point cloud separates potential curb clusters from noise, which improves the              
accuracy of the normal vector. These improvements to point grouping are advantageous for             
PCA as more accurate normal vectors can be calculated. 
 
The denoising step iterates through every cluster and calculates the normal vector using PCA.              
Two threshold values were experimentally chosen for the X normal vector component (T​X​) and Z               
normal vector component (T​Z​). To reduce the possibility of removing curb clusters, the threshold              
values were made lenient. Later steps in the curb detection method also remove noise, so it is                 
central for this step to maintain as much curb resolution as possible. The X and Z normal vector                  
components of each cluster are compared to T​X and T​Z​. If the X component is above T​X and the                   
Z component is below T​Z​, then that cluster is considered a curb candidate cluster and is                
maintained. Clusters that fail the comparison are treated as noise and removed.  
 
Due to the large amount of points in a point cloud, it is crucial to use efficient methods in                   
processing the point cloud. The time complexity of the PCA method used above is O(n) since                
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each step in the PCA method is iterative. This means that a single pass through each cluster is                  
required. 
 
After further experiments, it was found that the PCA method was reducing the resolution on the                
curb. The threshold values were modified to be even more lenient, however doing so introduced               
more noise into the point cloud. Clearly a modified approach was required. It was noticed that                
clusters that represented curbs contained some form of noise. This noise perplexed the PCA              
method which calculated a normal vector that did not fall within the thresholds. The noise was                
usually contained within a section of the curb cluster. Therefore a modified method was              
developed that calculated the normal vector on 50 adjacent points within a cluster.  
 
The modified method required that the points within clusters be sorted for easy iteration. A               
sorting algorithm called Quick Sort was used to sort the points in each cluster. Points were                
sorted based on their Y coordinate value and were sorted in ascending order. The time               
complexity of Quick sort is O(nlog(n)). Once the cluster is sorted, PCA is computed on 50                
adjacent point increments, with leftover points combined at the end. If the normal vector              
computed falls within the thresholds, the 50 point group is maintained. This will be repeated until                
all the normal vectors are calculated for all the points within the cluster. The advantage of the                 
modified method is that it is less resilient to noise since usually only a section of curb clusters                  
will contain noise. The modified method is then able to keep more curb resolution, while also                
removing more noise. The disadvantage is that the time complexity has increased, and that              
PCA must be computed on 50 point iterations in a cluster instead of for the whole cluster. This                  
performance hit is manageable since the similarity filter step of the curb detection method              
described in ​Section 6.2 removes a significant amount of points from the point cloud. Due to the                 
large point removal from previous steps, more time consuming and accurate methods are able              
to be chosen in this step. 
 
Figure 6.8 below showcases the results of the denoise step when using PCA. It is shown that                 
many noise points are removed and candidate curb clusters mostly remain. 
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Figure 6.8: Point cloud before de-noising (Left) and after (Right) 

 
Figure 6.8 showcases the strength of PCA to extract curbs and other objects that have similar                
properties. It is clearly seen that the right image contains mostly curbs without any points on the                 
road. The papers presented in ​Chapter 3 described the use of PCA through a voxelization               
approach. In contrast, the PCA implementation focuses on clustered point cloud data which             
allows for varying cluster sizes and densities. A clustered approach allows for clusters to              
represent distinct objects in a point cloud such as curbs. This allows PCA to be more effective in                  
extracting normal vector components from clusters that already represented objects within a            
point cloud. 

6.5 Segment and Linear Fit 
The preceding steps of the curb detection method significantly reduce the number of points in               
the point cloud, leaving primarily curbs and some noise. To further extract and model curbs, the                
point cloud is split into two separate point clouds based on the X value of points. All points with                   
a negative X value are segmented off into a seperate point cloud. This is done so curbs on                  
either side of the vehicle can be detected and extracted independently. The assumption of curbs               
being on the left and right side of the vehicle, as described in ​Section 3.2​, is used to split the                    
point cloud. The main focus of the curb detection method is to detect curbs to the side of the                   
vehicle and not directly in front. These curbs will not be affected by the point cloud segmentation                 
and will be captured fully within their respective point cloud segment.  
 
The papers in ​Chapter 3​, specifically [23, 26], use linear regression with quadratic equations to               
model curbs. Curbs follow a circular relationship beside curved roads, and are mostly linear              
beside straight roads. Several complications arise when using quadratic models for curbs. First,             
curved curbs would need to be sectioned off from linear curbs. The clustering algorithm              
described in ​Section 6.3 does not differentiate between curved and linear surfaces, and             
therefore would most likely cluster them together. Second, multiple models would need to be              
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created to accurately model complicated roads and intersections. Third, noise will interfere with             
more complex modeling compared to simpler approaches such as a linear model. Modeling             
curbs using quadratic equations was not chosen for the curb detection method, instead curbs              
are modeled as small linear segments. This allows for variation in curvature of curbs and allows                
modeling of complex roads and intersections. In addition, reporting small changes in the curb              
allows for the reporting of instantaneous rate of change of the curb. This was not used in the                  
curb detection method, however it is useful when further analyzing the curb. With the basis that                
the curb will be modelled as small linear approximations, the 50 point sections passed down               
from ​Section 6.4 ​will need to be further cut down. It was found that 25 point segments resulted                  
in a good linear approximation. 
 
Each section passed down from the Denoise step is split into 25-point segments while retaining               
point locality since sections are sorted based on y-value of points. Leftover points are combined               
into a segment smaller than 25 points. Linear regression is run on each segment. Linear               
regression is run using the y-value of points as the independent variable and the x-value of                
points as the dependent variable. Segments that represent curbs are expected to have high              
linearity since small curb segments are approximately linear. ​Figure 6.9 shows a detected curb              
section. It is clearly shown that the curb is linear and therefore can be modeled using linear                 
models. Furthermore, small segments of curved curbs will still be mostly linear and will also be                
represented as linear models. 
 

 
Figure 6.9: Curb detected in point cloud 

 
The slope, intercept, and linear correlation coefficient ( are computed for each segment.       )  r2       
Segments that showcase a high linear correlation coefficient are kept and passed to later stages               
in the curb detection method. A threshold value for linear correlation coefficient was             
experimentally found to be 0.8. Segments that have a linear coefficient less than the threshold               
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value are removed. In most cases those segments represent other objects in the point cloud               
including noise, and removing them is not detrimental to curb detection. Segmentation and             
linear fit is an important step in the curb detection method since it allows for further noise                 
removal, and more effective curb modelling compared to the large scale linear and quadratic              
models. This allows later steps in the curb detection method to take advantage of the linear                
representation of curb segments. The slope, intercept, and linear correlation coefficient are            
stored for each segment and used later on in the method.  

6.6 Segment Grouping 
The preceding steps deal with point removal from the point cloud. The goal of these steps is to                  
remove points that do not represent curbs. Segment grouping, on the other hand, assumes that               
sufficient point removal has been done. From the previous step, each cluster has been broken               
down into 25-point segments, and linear regression was calculated for each segment. Each             
segment is then modeled as a line. However, the total number of segments in the point cloud is                  
large, and each segment models a small part of the point cloud. To effectively output the                
location of curbs, these segments must be adequately grouped together.  
 
To reduce the grouping complexity, segments within a cluster will be grouped. Clusters are not               
grouped amongst themselves during this step. The motivation behind the groupings of            
segments is to convey a simple representation of each cluster, and to allow further steps in the                 
method to give confidence of detection for each cluster. Segment grouping is done through              
three criteria: 1) relative x location of segments, 2) relative y location of segments, and 3)                
through a novel similarity metric. First off, segments within a cluster need to be sorted in                
ascending order based on the average y value of each segment. This is done so that adjacent                 
segments can be compared. Next, each adjacent segment is compared, and a list is formed for                
adjacent segments that meet the three criteria. These lists contain the segment groupings. More              
segments are appended to the list that meet the criterias. When a segment does not meet all                 
the criterias, a new list is created and a new grouping of segments is formed. A cluster may                  
contain multiple groupings of segments.  
 
The first grouping criteria is the average x value of adjacent segments. It is paramount that                
close segments are grouped together, so looking at the distance between them is useful. The               
average x value of adjacent segments is compared, and the absolute difference is taken. If the                
difference lies below a threshold T​X​, then the next criteria are computed. Otherwise a new               
segment grouping is created. The second grouping criteria is the average y value of adjacent               
segments. Similar to the previous criteria, segments are grouped when they are close together.              
The average y value is computed for adjacent segments, and the absolute difference is taken. If                
the difference lies below a threshold T​Y​, then the final criteria is computed. Otherwise a new                
segment grouping is created. 
 
The final criteria is the similarity metric. The similarity metric compares the slope and intercept of                
adjacent segments. The similarity metric is high when slope and intercept of adjacent segments              
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match. The linear equations of adjacent segments are represented as vectors D and L, which               
include the slope and intercept values of each segment.  

 

                                                   (9)  
 
The similarity metric is then computed between vectors D and L using the following equation,               
where  is the similarity value.ρ  

 

                                              (10) 
 
The similarity metric is bounded between 0 and 1, and the closer it is to 1, the higher similarity D                    
and L have. Using this metric, similarity of adjacent segments is computed and compared to a                
threshold T​S​, which was experimentally found to be 0.6.  
 
The similarity metric compares the slopes and intercepts of two line segments. The similarity              
metric returns 1 when both slopes and intercepts match up, and trails off to 0 when they are                  
dissimilar. ​Figure 6.10 showcases the effects of changing the slope and intercept for a line               
equation . The graph on the right illustrates the effect of a changing slope to the  y = x + 1                
similarity metric. As the slope deviates from 1, the similarity metric drastically falls to a value                
near 0. The results of a changing intercept are similar, and are illustrated by the graph on the                  
left. 
 

 
Figure 6.10: Effects of changing intercept (left) and slope (right) for similarity metric 

 
Figure 6.11​ below combines the effects of changing intercept and slopes into a single graph. It 
is shown that when two line segments have similar slope and intercept values, the similarity 
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metric will output a value close to 1. As the slope and intercept get dissimilar, the similarity 
metric drops. 
 

 
Figure 6.11: Effects of changing intercept and slope for similarity metric in 3D plot 

 
The similarity metric is powerful in quantifying the likelihood that two adjacent curb segments              
belong to the same curb. As stated in ​Section 6.5​, curb segments are approximately linear, and                
are adjacent to each other. 
 
Figure 6.12​ below showcases the results of the segment grouping.  

 
Figure 6.12: Curb Segment Grouping 

It is clearly shown in ​Figure 6.12 that multiple segments have been grouped together. Each               
segment grouping is denoted by a different colour. For each grouping of segments, minimum              
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and maximum values are computed for x and y coordinates. The average x and y values are                 
computed, as well as the standard deviation. These groupings of segments are considered curb              
points and are used to convey curb detection results. All of these metrics help convey the                
location and structure of the curb that the segment grouping represents.  

6.7 Assigning Confidence to Detected Curbs 
Confidence values give a level of assurance to detected objects in the point cloud. The curb                
detection method is not perfect, and the method will make mistakes and detect false positives.               
These false positives may be detrimental to later steps in the ADAS stack. Furthermore,              
confidence is required when reporting detection to higher level sensor fusion software. Not             
every segment detected will represent a curb, so a method to give confidence to segments is                
crucial. ​Section 3.2 ​describes the expected structure of curbs, as well as the assumptions made               
prior to detection. Curbs are expected to be between 0.2m tall, with a width of 0.2m, and curb                  
segments are expected to be near-linear. Based on these characteristics, segments can be             
tested for compliance and given a confidence score.  
 
Confidence metrics give the curb detection method resilience to noise and false positives by              
flagging false positive segments with a low confidence score. This improves the accuracy and              
reliability of the curb detection method since the detection is tested based on curb              
characteristics. The confidence metrics developed for this project allow for configurable time            
and reliability performances. These confidence metrics are bounded between 0 and 1, where             
the closer the confidence is to 1, the more confident the method is that the detection is a curb.                   
The methods can be configured to tradeoff speed versus accuracy when assigning confidence.             
These configurations are made on the fly and are dependent on the speed of the vehicle. When                 
the vehicle is driving slowly, the real-time deadlines are more lenient, and therefore more              
accurate confidence methods can be employed. On the other hand, when the vehicle is driving               
fast, the real-time deadlines are more strict, and therefore more efficient and quicker confidence              
methods are required. 
 
Two seperate confidence values are calculated, one for segments within clusters, and another             
between clusters on each side of the vehicle. The sections below describe the two confidence               
metrics and their usage. ​Section 6.7.1 and ​Section 6.7.2 describe the confidence metrics intra-              
and inter-cluster respectively. Furthermore​, Chapter 7 describes a different curb detection           
method which is corroborated with this method. A method of corroboration was required which              
used the LiDAR data in a different way to generate curb locations. This new method can be                 
used to further enhance the intra-cluster confidence.  

6.7.1 Intra-Cluster Confidence 
Curbs are composed of one or more clusters, so confidence for each cluster needs to be                
calculated. Several curb characteristics are used for calculating cluster confidence. These           
characteristics are then combined into a single confidence value that is assigned to each              
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cluster. Each characteristic is denoted by a different confidence method, these methods are             
independent and can be configured separately to run based on the speed of the vehicle. The                
first method iterates through adjacent segments in each cluster and calculates the spatial             
difference between the segments. Since each cluster is sorted based on y-value, adjacent             
segments will be near each other spatially. For each adjacent segment, the difference between              
the lower y-value and larger y-value segments is taken. The difference is taken between the               
minimum x and minimum y of the larger y-value segment, subtracted by the maximum x and                
maximum y of the lower y-value segment. The difference is then compared to a threshold T​Y                
and T​X​, if the difference is below the thresholds, the confidence increases for that cluster. The                
second method looks at the number of segments in a cluster. Usually clusters that represent               
curbs will contain many segments. Therefore clusters that contain many segments obtain a             
higher confidence value. The third method uses the similarity metric described in ​Section 6.6​.              
Adjacent segments within clusters are expected to have similar slope and intercept values.             
Small sections of curbs do not deviate greatly, and therefore a metric that compares the               
similarity between segments can be used. This method iterates over all the segments in each               
cluster and computes the similarity between adjacent segments. If the similarity is above a              
threshold T​S​, then the confidence for that cluster increases. 
 
The three methods described above are independent and measure the likelihood that the             
cluster represents a curb. Each method requires varying time complexity to complete, and             
therefore tradeoffs between quick execution time, and more accurate confidence can be made.             
To calculate the aggregate confidence for each cluster, the above confidence values are             
averaged and represented for each cluster. 

6.7.2 Inter-Cluster Confidence 
Each half of the point cloud (i.e. left or right side of the vehicle) is expected to detect one or                    
more curbs. A confidence value must be given to indicate the likelihood that two or more                
clusters form a single curb. This is important since it allows for software later on in the ADAS                  
stack to quickly determine the confidence of a curb detected in the point cloud. This confidence                
is an aggregate of the cluster confidence described in ​Section 6.7.1​. Confidence is computed              
between close clusters since multiple clusters may represent a curb. Two methods for             
inter-cluster confidence were designed. The first method is an aggregate average of the             
confidence values for each cluster. This gives a quick snapshot for the point cloud to see                
whether a curb was detected with high confidence on either side of the vehicle. This method is                 
quick to compute and gives good performance for confidence accuracy. The second method             
looks at adjacent clusters and computes the likelihood that the clusters form a continuous curb.               
The likelihood is computed threefold: First, the confidence values of each cluster are checked              
and averaged. Second, the difference between the cluster average y and x coordinates are              
taken, if the difference is below a threshold T, then the confidence of the point cloud increases.                 
Third, the similarity metric is taken between the adjacent segments of both clusters. The              
confidence values are then averaged and displayed for each point cloud.  

47 



 

6.8 Real-Time Acceleration Methods 
A Real-Time System is a computer system which is required to periodically process data within               
a critical time constraint. In the case of the HDL64E LiDAR sensor, new data is produced at a                  
rate of 10Hz. In other words, every 100ms new LiDAR data is captured and must be processed                 
before the next set of data is received. For safety purposes, it is pivotal that the curb detection                  
algorithm execute from start to finish within this time constraint. Failing to do so could have                
serious repercussions, including the possibility that the vehicle makes a wrong decision and             
endangers the passengers.  
 
Considering the sheer size of the LiDAR data, the curb detection algorithm must be optimized to                
process all of the points and generate a confident output within the time constraint. For this                
reason, real-time acceleration methods were investigated to reduce the computational time of            
each frame of LiDAR data. The methods outlined in this section operate on the basis of using                 
results from previous snapshots to reduce the number of points that require processing. Given              
the time difference of 100ms between frames, these methods make use of the fact that, at                
regular velocities, changes in the vehicle’s surrounding environment from frame to frame are             
quite small. For instance, if a curb is detected to the right of the vehicle in one frame, it is likely                     
that in the next frame, the curb will still be in the same location. This use of prior knowledge                   
significantly reduces the search area for curb points in the point cloud. Thus is the principle on                 
which the Segment-Based Point Cloud Reduction method, described in ​Section 6.8.1​, relies on             
to reduce the computation time for each snapshot. ​Section 6.8.2 describes the            
Rear-Environment Recall Point Cloud Reduction method. In this method, only the half of the              
new LiDAR data that is in front of the vehicle is processed while the rear half is reused from the                    
previous frame’s point cloud. 

6.8.1 Segment-Based Point Cloud Reduction 
Using the segments reported in previous snapshots by the curb detection method, it is possible               
to speed up the next snapshot’s execution time through point cloud reduction. Removing points              
from the point cloud is obviously a risky task since the car would presumably rely on the correct                  
detection of a curb for either navigation, path planning, or environmental perception in general.              
This is why any method of point removal must be relatively conservative in that it should strive to                  
only remove points that can confidently be presumed not to be the curb in the next snapshot. In                  
the case of segment-based point removal, the detected curbs are used as a boundary within               
which no points may be removed. This should retain many of the curb points as well as the                  
road. Additionally, curbs often exhibit changes in their positioning relative to the vehicle over              
time and space. Thus, the segment-based approach also checks for variance in the curb              
position, and adds an extra buffer zone to ensure no curb points are accidentally removed. This                
process is run on both the right and left sides of the vehicle, and the point removal on each side                    
is independent.  
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Each segment reports numerous statistics about its position including: the linear equation,            
minimum and maximum x value, minimum and maximum y value. In the case of segment-based               
reduction, the minimum and maximum x values are of interest. These values allow for the               
maximum curb position on either side of the vehicle to be defined and tracked over time . The                 9

maximums are illustrated in ​Figure 6.13 a)​, where parallel, straight curbs, are on either side of                
the vehicle. The and describe the maximum boundaries of the curb. This is evident   xΔ lef t   xΔ right            
in ​b) and ​c) of the same figure. Using these maxima, the next snapshot can set a boundary of                   
where the curb and road are likely to lie, and retain these points.  
 
 

 
Figure 6.13: Exponential averaging example with bus lane over multiple snapshots 

 
Figure 6.13 b) and ​c) illustrate a condition where, on the right side of the vehicle across multiple                  
snapshots, a bus lane emerges. It is, however, not clear in ​b) that this divergence in the curb                  
maximum is continuous, or ending. In case of the former, if the road boundary was set                
according to just the maximum x location in ​a)​, then this would be entirely insufficient, and the                 
curb may be completely lost in future snapshots. Thus, the rate of change of the maxima must                 
also be taken into account when considering the reduction boundary. This rate of change was               
previously referred to as the variance of the curb maxima. In ​b) and ​c)​, the variance is reflected                  
by , which is the difference between the maximum and minimum x positions in the dΔ right               
detected segments on the right side. However, when setting a boundary, taking only the              
maximum and the variance and applying these to the next snapshot is insufficient and              
potentially dangerous. Thus, when setting boundaries, extra buffer space must be allowed to             
account for sharp changes in the curb, or other unexpected variations. Additionally, the             
difference in the maximum and minimum curb position is highly variant, so any changes in this                
difference should be averaged over multiple snapshots to avoid an overreaction or oscillations .  10

 

9 Maximum curb position on the left is the smallest x value, maximum on the right is the largest x value. 
10 Initial testing on a method using just the difference of maxima and minima for variance revealed an                  
underdamped response, where the variance would oscillate about a central value.  
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In order to calculate the boundaries, three values are required: The maxima, the averaged              
deltas, and the buffer. Since these boundaries will affect future snapshots, and since curbs are               
often continuous (excluding intersections, and other gaps), it follows that the boundary            
calculations should be temporally continuous. In other words, the boundary should be set and              
informed by the current, and previous detections. One method that allows for such a calculation               
schema is exponential averaging. This allows for each of the variables to be averaged over time                
with a weighting so that old results minutely affect newer ones, and newer results more strongly                
affect the boundary location. The variables to be averaged are the maxima on both sides of the                 
vehicle, and the variance on both sides of the vehicle. The general exponential averaging              
equation is shown below, where is the current averaged value, is the previously     (t)  g       (t )  g − 1     
averaged value,  is the currently detected value, and  is the smoothing factor.(t)  h α   

 
                                        ​(11)(t) αh(t) (1 α)g(t )  g =  +  −  − 1  

 
The optimum value for the smoothing factor was experimentally found to be 0.4 for both the                
variance and maxima. When calculating the boundary, the exponential average for the maxima,             

, and the exponential average for the variance, , are summed. A buffer is also added(t)  xmax         (t)  v         
to the variance to ensure that any sudden changes of the curb are accounted for. The buffer is                  
exponentially averaged along with the curb variance. The buffer's value was experimentally            
found to be 2 meters . The boundary, , is calculated according to the equations below.(t)  b  11

 
(t) αΔx  (1 α)x (t )  xmax =  right +  −  max − 1                              ​(12) 

(t) α(x (t) (t )) (1 α)v(t ) 2  v =  max − xmax − 1 +  −  − 1 +        ​ (13) 
(t) v(t)  b(t) x=  max +                                    ​(14) 

 
When segment-based point cloud reduction is used, it is necessary to provide at least one               
snapshot prior to the calculation of a boundary. This first snapshot is used to calculate the initial                 
variance and maxima which will then be used to set the boundary in the next snapshot. In                 
Figure 6.14 a)​, the boundary is calculated for each snapshot for a simulated bus lane according                
to the example of ​Figure 6.32​. After an initial adjustment, the boundary adapts to the curb                
location, and is able to take into account the bus lane with no issue. Similarly, ​Figure 6.14 b)                  
illustrates the boundary conforming to the initial curb; however, an issue arises when a large               
change in the curb location occurs. The red circle in ​b) indicates an error in the boundary. Since                  
the boundary is set to around 6m, the new curb location of 9m is not captured. In this case,                   
since no curb was detected, the boundary calculation restarts, and the entire snapshot is              
analyzed in the next time frame. This allows for errors from rapidly changing curbs to be                
accounted for so that the car can recover quickly. After the 10th iteration, another large change                
in the curb location is introduced, however, since this change is gradual, occurring over multiple               

11 Since alpha = 0.4, and the buffer is 2m, given that the variance and maxima are added over                   
subsequent iterations, the buffer will be realized as a 2m buffer plus the geometric expansion of original                 
2m buffer multiplied by the smoothing factor. This leads to a total buffer over multiple snapshots with an                  
unchanging curb of up to 5m. This is given by the following:  (2m) + (2m) * ( 0.6 / (1 - 0.6) ). 
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snapshots, the boundary is able to keep up. It is worth noting that these huge changes in curb                  
location are unexpected in real-world driving environments, however, these error conditions           
must still be addressed to ensure safety and reliability.  
 

 
Figure 6.14: Graphs of the exponentially averaged boundary and the real curb location 

 
This method of point cloud reduction works well in real-world scenarios. In the test data               
provided by QNX, the method was able to keep up with all changes in curb location without any                  
errors like illustrated in ​Figure 6.14 b)​. This is most likely due to the continuous nature of curbs,                  
and the low likelihood of extreme discontinuities. Speedup for segment-based reduction is            
presented in ​Section 6.8.3​. Due to the relatively large buffer zones, the speedup is marginal,               
but for a real-time system, may be necessary to meet deadlines.  

6.8.2 Rear-Environment Recall Point Cloud Reduction 
The Rear-Environment Recall Point Cloud Reduction method takes advantage of the short time             
lapse between snapshots combined with the vehicle’s movement to reduce the computation            
time per snapshot. In this method, the vehicle’s Inertial Measurement Unit (IMU) is used in               
conjunction with the LiDAR sensor. The IMU data provides the necessary information for             
calculating the exact translation of the vehicle between frames of the LiDAR data. It is hence                
possible to reuse already processed LiDAR data from the previous frame by adjusting for the               
translation and rotation of the vehicle. It is worth noting that this method is only enabled when                 
the vehicle is moving as there is no purpose in real-time acceleration for curb detection when                
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the vehicle is stationary. ​Figure 6.15 shows how the Rear-Environment Recall method reuses             
the previous LiDAR frame to reduce the number of points to be processed in the second frame. 
 

 
Figure 6.15: Frame to frame vehicle translation 

 
In ​Figure 6.15​, the first LiDAR frame, t1, is delimited by the orange lines while the second                 
LiDAR frame, t2, is delimited by the green lines. The region where the frame 1 and frame 2                  
LiDAR point clouds overlap is the subset of points that are reusable for frame 2. When frame 2                  
is received from the HDL64E LiDAR, the environment in that subset is already known and               
processed from frame 1. There is no need to reprocess these points. The vehicle’s position will                
however have changed by some Δx and Δy values thus requiring the already processed points               
in frame 1 to be translated to align with the point cloud in frame 2. These values can be                   
calculated using the following kinematics equations: 

 

x vx ax  Δ =  * t + 2
1 * t 2  

                            ​(15) 

y vy ay  Δ =  * t + 2
1 * t 2  

                                    ​(16) 
 

where vx, and ax are the velocity and acceleration in the x direction, vy and ay are the velocity                   
and acceleration in the y direction, all of which are given by the IMU; and t is the time lapse                    
between frames equal to 100ms. By adding these Δx and Δy values to the x and y values of                   
each point in the overlapping region, the points are aligned with the point cloud in frame 2.                 
When reusing LiDAR points from memory, it is also necessary to consider potential rotation of               
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the vehicle between frames as well. ​Figure 6.16 shows how the vehicle may rotate between               
frames. 
 

 
Figure 6.16: Before and after rotation of the vehicle. In a) the vehicle faces directly forward. In b), 

the vehicle has rotated -10° along the yaw axis. 
 

In the case of ​Figure 6.16​, the vehicle has rotated by an angle of -10° along the yaw axis                   
between frame 1 and frame 2. For the points in frame 1 to be reused during the frame 2                   
computation, all overlapping points between the two frames must also be rotated by the same               
angle. This is achieved by applying the following rotation matrix to all these points: 

 

                                         (17) 
 

where x’ and y’ represent the new x and y value for each point after the rotation, and theta is the 
angle of rotation of the vehicle along the yaw axis. Once the rotation and translation of points in 
the overlapping region between frames have been accounted for, the points become aligned 
with the point cloud of the second frame. Since these points have already been processed and 
are all situated behind the vehicle in frame 2, all the points behind the vehicle in frame 2’s 
LiDAR point cloud can be removed and replaced with the already processed LiDAR points. This 
reduces the size of the point cloud behind the vehicle from approximately half of the total point 
cloud to a few hundred curb points that were detected in the previous frame. The computational 
burden is thus significantly decreased, since the curb detection method only needs to process 
the points in front of the vehicle rather than the entire point cloud. As will be discussed in the 
next section, the Rear-Environment Recall Point Cloud Reduction method has yielded desirable 
results. 
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6.8.3 Speedup Results of Real-Time Acceleration 
The two real-time acceleration methods outlined above were developed and tested in separate             
environments: The Segment-Based method was developed and tested in Python while the            
Rear-Environment Recall method was developed and tested in C. Both methods were run in              
Linux, and the C environment used a QNX virtual machine. Segment-Based reduction was run              
on an 8th generation i5 processor, while the Rear-Environment reduction was run on an 8th               
generation i7 processor. Since C is a compiled language, and Python is an interpreted              
language, it is expected that the computation time per snapshot will be significantly faster in C.                
Given the differences in environment, it is also useful to outline the method of testing used for                 
each speedup scheme. The segment-based scheme was tested by passing sets of 4             
consecutive snapshots to the detection algorithm with point reduction either turned on or off.              
Given that the first snapshot can not be used for speedup calculations, it was ignored when                
calculating average runtimes for the results. To get the speedup, the average runtime of each               
snapshot was taken across multiple trials for both the full-sized and reduced snapshots. The              
speedup was then calculated according to the following equation, where is the runtime          tof f     
without acceleration, and  is the runtime with acceleration.ton  

 

peedup 00%S =  ton
t  − tof f on · 1                            ​ (18) 

 
Rear-environment recall was tested in much the same way, however, instead of running on a               
set of 4 consecutive snapshots, it was run on multiple different sets of consecutive snapshots.               
Rear-environment recall was run a total of 500 times, and segment-based reduction was run for               
40 trials. ​Table 6.1​ shows the speedup results of both real-time acceleration methods: 
 

Table 6.1: Real-Time Detection Acceleration Results 

Method of 
Real-Time 
Acceleration 

Average time to 
detect curbs 
without speedup 

Average time  
to detect curbs   
with speedup 

Speedup 
Difference 

Speedup 
Percentage 

Segment-Based 
Point Cloud 
Reduction 

4.837s 3.945s 0.892s 22.61% 

Rear Environment 
Recall Point Cloud 
Reduction  

35.02ms 
 

14.71ms 20.31ms 138.07% 

 
Considering that the execution time is highly variable and dependent on the computer             
environment, it is important to note that the times of detection are not as significant as the                 
speedup difference and the speedup percentages. The Rear-Environment Recall and          
Segment-Based methods effectively reduced the computation time of a single snapshot, on            
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average, by 138% and 22% respectively. This result is desirable as it leaves the curb detection                
algorithm almost 80ms of leeway. The curb detection method could thus be expended for              
sensor fusion and decision-based detection given the extra execution time available. 
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Chapter 7: Road Detection and Corroboration of       
Curbs 
The method in [22] was implemented as an independent method, however there is a benefit in                
corroborating this method with another which focuses strictly on curb detection. By performing             
both methods on the same environment, it is expected to see similarity between the edges of                
the detected road surface and the outcome of the curb detection method.  

7.1 Road Detection 
One method of finding the road’s edges is by detecting the drivable space and then classifying                
the edges of this space as the edges of the road. To detect the drivable space on the road,                   
adjacent lasers from the LiDAR are examined. Each laser sampled from the LiDAR sensor will               
return the distance (radius) that the laser travelled before hitting and being reflected by an               
object in the environment. As the LiDAR sensor’s lasers scan the road, as long as the road is                  
flat with minimal deviation, the radius of each laser should remain constant. When the lasers               
reach the edge of the road and encounter a curb or gravel edge, the radius changes and no                  
longer remains constant. This creates an inflection point in the data. Due to the fact that the                 
radius of one laser will be relatively constant along the road, we expect the difference between                
the radii of two adjacent lasers to be relatively constant along the road as well. When examining                 
the difference between the radii of two adjacent lasers, the inflection points at the road edges                
are amplified due to the significant variance. This allows easier detection of these inflection              
points and subsequently, the road edges. Using this method iteratively over every pair of              
adjacent lasers allows the extraction of the road edges along the path of the vehicle. The space                 
between the road edges is classified as the drivable road [42]. 

 
Figure 7.1: Adjacent Laser Radii and their difference [42] 
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The top half of ​Figure 7.1 showcases the changing radii, d, of 3 adjacent lasers as they scan                  
across the road. The constant portion of the data in the middle of the plot is where the road was                    
being scanned, and the portion where the data starts to change rapidly represents the road               
edges. Shown in the bottom half on ​Figure 7.1 are two lines; the black line representing the                 
difference in radius between the blue and red line, and the pink line representing the difference                
in radius between the red and green line. Taking the difference between two adjacent lasers               
gives a more flat and constant representation of the road portion, while accentuating the              
variance of the road edges. 
 
Inflection points are simply a point on a curve at which the concavity changes sign (i.e. from                 
concave to convex or the opposite). Two example inflection points are marked by blue boxes in                
Figure 7.1​. In this case, an inflection point represents a change in the road surface which                
indicates its edge. The data being examined is the difference in radii between two adjacent               
lasers. The difference shows the constant delta between each laser’s radius while on the road               
and then shows the drastic change in that delta once the road edge is encountered. There are                 
multiple ways to detect inflection points along a curve. ​Sections 7.1.1 and ​7.1.2 explain two               
different methods which were used. An issue with this method of road detection is the fact that                 
inflection points don't solely come from curbs or road edges. Any disturbance or object on the                
road can create an inflection point. This necessitates some way to determine which two              
inflection points represent the actual road edges. This can be done using a loss function. By                
calculating the loss of each pair of inflection points, the pair which is most probably to represent                 
the actual road edges can be found. This is done by choosing the pair of inflection points which                  
has the lowest loss. Further details of the loss function are described in ​Section 7.1.1 along                
with a method to find inflection points using surface variation. An alternative method for              
calculating the inflection points using the averaged difference in radii is described in ​7.1.2​. 

7.1.1 Surface Variation Approach 
One approach to finding inflection points is using surface variation. This method is similar to that                
of the road surface filter. One main difference however is that the road surface filter is                
performed on 3D LiDAR data where this method is used on 2D data. To find the inflection                 
points, this method uses a sliding window approach. A specified number of points are examined               
in each iteration and whether they are classified as an inflection point is decided by the surface                 
variation value. If it lies above a specified threshold value, then it is classified as an inflection                 
point. For each iteration of the sliding window, the 2D covariance matrix is calculated. From this,                
the two eigenvalues are also calculated. Then the surface variation is calculated using equation              
19. 
 

 ​                                                ​(19)
λ0

λ +λ0 1
 

 
Any portion of the difference in radii data which has a surface variation value above the                
threshold is classified as an inflection point, meaning there could be more than 2 inflection               
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points found in the data even though there are only 2 edges to the drivable road. These                 
additional inflection points are due to objects or other variations in the road. As mentioned in                
Section 7.1​, a loss function is used to find the pair of inflection points which is most probable to                   
be the actual edges of the road. 
 
The loss function used is shown in equation 20, where n and m are the pair of inflection points,                   

is the difference in radii between the two adjacent lasers at index ​i​, and is the average Δdi               Δd    
difference in radii between the two adjacent lasers. The loss function promotes inflection point              
pairs which are far apart and have little variation in between them. 
 

                                             (20) 
 
Once all inflection points are found, and the loss function calculates the loss for each inflection 
point pair, then the pair with the lowest loss is selected and classified as the road edges. 

7.1.2 Averaged Difference of Radii Approach 
The previously mentioned road detection algorithm is inherently complex and computationally           
intensive when determining inflection points. Experimentation was done on alternative methods           
of determining inflection points which could simplify computation. 
  
The averaged difference of radii approach is a simplified version of the inflection point detection               
algorithm which involves using mathematical averaging to determine the prominent inflection           
points. This method is designed to ideally detect solely the inflection points nearest to the left                
and right of the vehicle’s path. These inflection points should correspond to the curbs or to any                 
vehicle that is along the path of the laser. After the difference in radii, Δd, is calculated, an                  
assumption is made that there will be two inflection points along the road; one to the left of the                   
vehicle, and one to the right of the vehicle. The x component of the direction in which the vehicle                   
is moving is calculated to narrow down the boundary for where inflection points could exist. This                
is used since there will typically be curbs to the left and right of the vehicle. If the vehicle is                    
travelling parallel to the two curbs, then this center would be immediately between the two               
curbs. 
 
The method consists of traversing Δd values starting from the center and traversing to each side                
of the vehicle until the inflection points are found. Referring to the equation below, groups of four                 
Δd values are averaged and then compared to their preceding group of four Δd values. This                
process is performed iteratively four each grouping of four Δd values until the inflection points               
are detected. The value four was chosen as it rendered the best result for change in Δd. 
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                                 ​(21)dΔ = 4
Δd  + Δd + Δd  + Δdi i + 1 i + 2 i + 3

 

 
Referring to the equation below, If the difference in these averaged values is greater than a                
threshold, an inflection point exists between the two values.  

 

                ​(22)d  hresholdΔ dif f = 2
Δd  − Δdav (j) av (j − 1) > T  

 
The threshold is adjusted to account for noise along the road, but it is assumed that there are no                   
disturbances in the road that would cause false positive inflection points. Once the algorithm              
reaches a curb, there will be a significant change in Δd averages and an inflection point will be                  
detected. This inflection point is then classified as a potential curb. The same process occurs on                
the other side of the vehicle.  
 
To validate that the inflection points are correct, the detected inflection point could be compared               
to the adjacent pair of lasers’ inflection points as an improvement. This will ensure continuity. If                
continuity is present, then it is more probable that the inflection points correspond to a curb, or a                  
distinct straight lined obstacle. This method returns a set of (x, y) points that correspond to the                 
locations of the curbs for each set of adjacent laser scans. 
 

7.2 Results on Road Detection 
Both the surface variation approach and the averaged difference in radii approach yielded             
inflection points that corresponded to the curbs. The surface variation approach detected all of              
the inflection points and then returned the pair with the lowest loss as being curb points. The                 
averaged difference in radii approach detected solely the pair of points corresponding to the              
curb. Referring to ​Figure 7.2 below, the red portion corresponds to the detected road surface               
between each detected inflection point pair. The blue portion corresponds to the rest of the               
environment. Both of these methods detected the inflection point pair and corroborated each             
other. 
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Figure 7.2: Road surface detection using inflection points 

 
Both methods were able to detect the road surface well but they suffered when adjacent lasers 
were spread further apart. This caused the delta in the radii to have more variation which would 
yield false positives for inflection points. The road surface method is most applicable to 
detection closer to the vehicle, which from testing was within 15-20 metres in front of the 
vehicle. 
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Chapter 8: Combined Methods and Results 
The methods described in ​Chapter 6 and ​7 are two unique approaches for curb and road                
detection using LiDAR data. Both methods are independent and can be run in parallel. As               
described in ​Section 6.7​, confidence values are added to detected curbs that measure the              
certainty of the curb detection method. The confidence values are based on the characteristics              
of the detected curb from a single method. Basing confidence of detected curbs on two               
independent methods improves reliability and robustness of curb detection. ​Section 8.1           
describes the corroboration of the two curb detection methods described above. In addition,             
further curb detection results are discussed in ​Section 8.2​. Finally, detection on sparse point              
clouds will be discussed in ​Section 8.3​.  

8.1 Assigning Confidence to Corroborated Detection 
To further improve the reliability of curb detection, the curb and road detection methods              
described above are combined into a single corroborated method. To achieve this, the road              
detection method is used to further give confidence for the curb segments detected by the curb                
detection method. To recall, the curb detection method outputs several curb clusters that             
contain curb segments. Each curb segment is denoted by a linear equation, the average x and y                 
values for the segments, the standard deviations of x and y, and the maximum/minimum x and y                 
values. The road detection method returns a set of inflection points that correspond to the               
locations of curbs. Each inflection point is measured by its x and y coordinate value. Therefore,                
an inflection point found using the road detection method can be compared with the curb               
segments.  
 
The x and y coordinates of inflection points are compared to the maximum and minimum x and                 
y values of each curb segment. If the inflection point falls within a curb segment, then that curb                  
segment’s confidence increases greatly. Curb segments that contain an inflection point are            
more likely to represent curbs since two independent detection methods resulted in the same              
detection. However, inflection points that do not fall within any curb segments are discarded.              
Due to the segment-based curb result representations, inflection points cannot be represented            
independently and must be corroborated with curb segments. Curb segments that contain no             
inflection points are still represented, albeit with lower confidence. The corroborated results give             
more accurate and reliable curb detection, since two independent methods outputted similar            
results. However, if both methods detect the same false positives, then these false positives will               
be represented with high confidence. This is uncommon, since both methods have different             
approaches for detection. 
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8.2 Results with HDL64E 
The methods developed in this paper prove to be effective at detecting and extracting curbs               
from LiDAR point clouds. ​Figure 8.1 below showcases the detection of the corroborated             
methods.  

 
Figure 8.1: Raw point cloud (left) vs. detected curbs (right) 

 
Figure 8.1 ​showcases accurate curb detection with no false positives. As shown from the 
detection, all points other than curb points are filtered out. The curbs detected correspond to the 
full length of both curbs seen in the raw point cloud. This detection shows that the corroborated 
method is resilient to false positives and noise, while also maintaining strong curb resolution.  
 
The following table showcases results of the curb detection method on real world LiDAR              
snapshots. Each snapshot was extracted from a HDL64E LiDAR sensor. The table showcases             
images of snapshots after the filtering step, and after the full curb detection method. Curb               
clusters are coloured in the curb snapshot. The table also displays confidence values for both               
the right and left curbs. These confidence values are an aggregate score of the multiple               
confidence methods described in ​Section 6.7 and ​Section 8.1​. Finally, comments are            
showcased for each snapshot. 
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Table 8.1: Curb detection method results using HDL64E LiDAR sensor 

Snapshot after filtering 
step 

Curb Snapshot Right curb 
confidence 

Left curb 
confidence 

Comments 

  

1 0.8 Curbs are detected with 
a few false positive 
detections. 

  

0.9 0.79 Curvature in the curb is 
detected. Some false 
positives detections, 
however false positive 
detections are behind 
the curb. 

  

1.0 0.788 Curbs are detected with 
no false positives. 
Noise on the curbs 
reduces confidence 
value. 

  

1.0 0.93 Intersection cuts off the 
left curb. Right curb is 
detected and the left 
curb before the 
intersection is detected. 
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0.76 0.78 The car is turning into a 
new roadway. The right 
curb is not visible, and 
the left curb is blocked 
by cars. The left curb is 
correctly detected, but 
the right curb contains 2 
correct segments and 2 
false positives.  

  

1 1 Lack of curb on the right 
due to an intersection 
causes a small number 
of segments to be 
detected for the right 
curb. Confidence is high 
because the curbs 
detected showcase 
strong curb 
characteristics.  

  

0.77 0.77 Noise and remnants 
from the similarity filter 
lead to false positives 
detected next to the car 
on the left curb. 

  

0.76 0.80 False positives detected 
outside of road area on 
right and left side curbs.  
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0.84 0.78 Noise on the left curb 
makes it difficult to 
detect the curb beside 
the vehicle. Right curb 
is detected well, 
however some of the 
curb is not detected due 
to noise. 

  

1.0 0.79 Right curb is detected 
fully with some false 
positives. Left curb is 
sparse and therefore 
not fully detected. 

  

0.48 0.6 Noise from ground 
points reduces 
detection confidence by 
introducing false 
positives on the road. 
Detection of curbs 
themselves are good. 

 
From ​Table 8.1​, several conclusions are made on the effectiveness of the curb detection              
method. First, the curb detection method detects that there are curbs on both sides of the                
vehicle for each snapshot. Second, as seen by some snapshots, curb resolution is not always               
maintained and some parts of the curb do not get detected. The false negative rate for curb                 
detection is high in some snapshots, which raises safety concerns. Snapshots are received and              
analyzed every 100 ms, and therefore new data comes in of the surrounding environment. It is                
more likely that the curb will be detected fully over multiple snapshots. Third, false positives are                
also apparent in the detections. These false positives are not curbs, however the curb detection               
method classifies them as curbs. Mostly, false positives are detected behind the curbs and not               
on the road. This means that false positives do not cause hazards to the detection. Fourth,                
noise plays a prevalent part in the success of curb detection. It is seen in several snapshots that                  
the curb detection method does not detect curbs with high noise to signal ratio.  
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8.3 Results on Sparse Point Clouds 
Sparse point clouds provide a unique testing environment for curb detection methods. Point             
resolution on curbs and the surrounding environment is decreased, making it harder for the              
detection methods to extract and correctly identify curbs. Randomly removing points can be             
seen as a method of stress testing, since it decreases the accuracy of the model, and may even                  
lead to a breaking point. These breaking points are important and useful to know. Testing the                
combined methods on sparse point clouds also allows for a measure of how effective detection               
is in high noise environments. It is expected that high noise environments (e.g. heavy snow /                
rain), will produce many scattered noise points which will be removed with preprocessing or the               
filters. By reducing the point cloud density before these steps, it is possible to test the entire                 
method as if it were experiencing high noise. To create a sparse point cloud, a random number                 
generator is initialized with a seed such as the current date and time. Then, indices are                
randomly selected from each laser line and the corresponding point is removed. This ensures              
that each laser line will see a reduction of points of the same magnitude in random positions.                 
This is repeated for each reduction percentage. Each of these reduced point clouds is input to                
the curb detection method, and the results are recorded.  
 
The testing process with sparse point clouds revealed some interesting results. To ensure the              
detected curbs were correctly identified, two labelled point clouds were used, and the similarity              
metric (see ​Section 6.6​) was employed to give a measure of the accuracy of the detection. The                 
results, averaged over multiple executions of both labelled snapshots, are illustrated in ​Figures             
8.2​, ​8.3​, and ​8.4​. It is important to note that three breaking points were identified during testing:                 
1) After about 40% point removal, the curbs start becoming more sparse, and miss-detections              
become common; 2) After 50% point removal, miss-detections become very common, but are             
essentially random and consist of few segments; and 3) 90% point removal reveals a total               
breaking point where no segments can be correctly identified. It is therefore recommended that              
the curb detection method is not used in any scenarios with greater than 30% reduction . In                12

Figure 8.2​, the average cluster size and the largest cluster size (as in the number of segments                 
per cluster) is plotted against the removal percentage. It is evident that the clusters become               
consistently smaller over increased sparsity, but it isn’t immediately clear why the average             
cluster size remains about the same. The latter case occurs because with low removal              
percentages, noise is still present to a high degree. The segmentation methods struggle to              
remove noisy clusters and small clusters that don’t contribute to or corroborate detection. For              
example, in the 0% removal case, the largest cluster is often in the range of 10-15 segments,                 
but there are many small clusters of size one or two, that contribute to a lower average cluster                  
size. A problem with these small clusters is that they can often be highly variant, and                
susceptible to noise. This means that small clusters are expected to decrease accuracy overall.              
This is seen in the comparison between ​Figure ​8.3​, and ​Figure 8.4​. The largest clusters often                
exhibit the best detection results, and are less susceptible to noise. As shown in ​Figure 8.3​, the                 

12 It is, of course, hard to identify situations where random point removal will occur in the real-world, but                   
that said, this is a warning for high-noise usage of LiDAR-based detection.  
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largest clusters have high similarity with the known curb position (> 93% similarity for all               
between 0 and 30% removal). ​Figure 8.4​, however, shows the results with all clusters taken into                
account (with the exception of the clusters of size one). It is evident here that the average                 
similarity has decreased by over 10%, meaning some of the clusters are in fact not detecting the                 
curb at all.  
 

 
Figure 8.2: Cluster size versus removal percentage for sparsity testing 

 

 
Figure 8.3: Similarity of largest cluster in detection to known curb versus removal percentage for 

sparsity testing 
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Figure 8.4: Average Similarity of all detected clusters in detection to known curb versus removal 

percentage for sparsity testing 
 
The results presented here indicate a number of flaws with the detection method as it currently                
stands. Firstly, the segmentation technique, while novel and effective for curved and straight             
roads alike, is difficult to test. The labelled curbs used in the above tests were straight,                
uninterrupted curbs that had a straight line fitted via linear regression, using points that were               
hand picked. It is not clear at all how this method could be tested on curved roads, much less                   
interrupted road sections, or bus lanes and other non-uniform road changes. The segmentation             
technique also suffers from false positives in a way that other methods of detection do not,                
namely, the segment grouping technique presented in ​Section 6.6 does not effectively remove             
non-curb segments. This could, had it been implemented on time, be remedied by inter-cluster              
confidence, but fundamentally the errors are still present and need to be addressed with more               
in-depth research. Secondly, the confidence metrics presented are not effective at producing            
useful self-referential confidence levels. For example, some of the results omitted from this             
section include the various confidence levels against removal percentages. These results were            
omitted because, despite some segments incorrectly identifying curbs as perpendicular to the            
roadway and actual curb, the cluster was given 100% confidence. Similar results to these were               
identified in all levels of removal, and are concerning to say the least. Finally, the first few steps                  
of the curb detection algorithm seem to allow too many points on the road. This is due to the                   
augmented similarity filter of ​Section 6.2.2​, which uses PCA to remove points within a few               
meters of the vehicle instead of the similarity filter. This causes quite a few errors, and                
noticeable faults with segmentation. These defects were all caught through the analysis of the              
method on sparse point clouds. It is clear however, that improvements must be made, and the                
presented curb detection method is incomplete.  
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Chapter 9: Future Work and Research Possibilities  
The methods described thus far have proven effective at detecting curbs and corroborating             
detection. New methods have been introduced which add great value to curb detection and              
environmental perception. Detected curbs have been modeled using segments, which allow for            
a more accurate curb model and the reporting of instantaneous changes. Algorithmic real-time             
speedup methods were introduced which allow for faster execution of a single snapshot given              
the detection results of prior snapshots. Corroboration methods allowed for higher confidence            
levels and safer curb modelling. Finally, the curb detection method was shown to be effective               
with the HDL64E on full and sparse point clouds. These achievements have enabled the              
presented techniques to have high-confidence detections, and low false positive rates.  
 
The methods and techniques presented have been developed with accuracy in mind based on              
the tools currently available. Improvements, however, can still be made. For example, the             
aforementioned real-time speedup methods are effective insofar as they provide algorithmic           
improvements, however, these methods don’t speed up the processes of curb detection, they             
just remove points so that the workload for a given snapshot is reduced. Given that the curb                 
detection method would need to work in a real-time embedded system with deadlines, and that               
the worst-case computational complexity must be assumed to accomplish the deadline, work            
must be put in to reduce the runtime with other methods. Additionally, the methods presented               
for clustering are incredibly effective for non-uniform point density, however, they can be             
improved to incorporate the expected features of a curb and thus allow the removal of some                
steps of the method such as denoising with PCA. In addition, machine learning, despite its               
flaws, should be explored as a detection or corroboration method. Finally, sensor fusion should              
be examined for higher accuracy detections, and more effective corroboration.  

9.1 Real-Time Speedup 
The real-time speedup methods presented in ​Section 6.8 explore point reduction as a             
technique to lower runtimes due to reduced workloads. These methods are effective insofar as              
they have adequate information, i.e. previous snapshots’ detection, to inform the current curb             
position. This means that, in the worst case, a curb detection algorithm will still have to run                 
without speedup due to sufficiently changing road conditions, as explored in ​Section 6.8.1​, such              
as large variations in the curb position. This worst-case scenario must be considered the norm               
when considering the use of curb detection with real-time deadlines in a safety-critical system              
like a car. The results presented in ​Table 6.1 in ​Section 6.8.3 were obtained using powerful                
desktop processors. The execution time of each method was on average 4.837 s and 35.02 ms                
for segment-based and rear-environment recall respectively (albeit running in different          
environments). It is not clear how these execution times would scale to a much less powerful                
embedded microcontroller, much less how these methods would work independent of any            
virtual machines or OS-dependant interruptions like context switching. Thus, two methods are            
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proposed to increase execution efficiency, without decreasing just the workload. These are            
multithreading, and hardware acceleration with edge computing.  

9.1.1 Multithreading Speedup 
The speedup results presented in ​Section 6.8.3 were quoted based on a single thread of               
execution on powerful desktop machines. Given this, the runtime results are actually quite             
impressive: a snapshot can be partially processed in 35ms in a C-based environment, which              
itself is running in a Virtual Machine on top of the Operating System. The data reduction                
techniques alone achieved large speedups but, given that many of the steps of the algorithm               
can be executed separately or in distinct chunks, a case can be made for employing               
multithreading to reduce runtime. Each step of the curb detection algorithm, other than the              
clustering steps (clustering and segment grouping), can be individually parallelized. For           
example, the preprocessing step can be split into a number of subsections and each subsection               
can be iterated over to remove duplicates and employ the height filter. Then, for the similarity                
filter, a point cloud can be split into subsections and each segment can be iterated over to                 
remove non-similar points according to the criteria set therein. Clustering, however, forms a sort              
of bottleneck which requires reconstruction of the entire point cloud into a vector form.              
Clustering can not be multithreaded due to its inherent requirement to access the entire point               
cloud, thus, this section must be executed sequentially. The steps after clustering, excluding             
segment grouping, are parallelizable like preprocessing and filtering.  
 
The ideal speedup of a concurrent system with parallelizable and sequential sections is given by               
Amdalh’s Law. Speedup increases with the number of concurrent tasks up to a certain              
maximum which is governed by the amount of sequential code. The speedup is given in the                
equation below, where is the proportion of parallelized code, and is the number of   f         N      
concurrent tasks [43]. 
 

                                                      (23)(f , N ) S  =  1
(1−f )+ f

N
 

 
The speedup, however, is never ideal. Real-world factors such as congestion, memory access             
times, communication between threads and so on; affect the speedup as well. These tend to               
decrease the speedup with a greater number of concurrent tasks, and therefore the number of               
tasks should be carefully considered. Additionally, given that the curb detection algorithm is             
supposed to run on a car computer system, it is unlikely that a large number of threads would                  
be available. That said, based on the computer systems observed at QNX, it can be expected                
that 4 threads could be running in parallel on a quad core system. The sequential portion of the                  
algorithm can also be estimated, at a high estimate, at around one third of the runtime                
(clustering is afterall an intensive task). So, the speedup can be estimated at around              

. This speedup is certainly encouraging, and would merit testing of the really(0.666, 4)  S  = 2              
achievable multithreading speedup. 
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9.1.2 Hardware Acceleration 
The architecture of the computer system used by QNX has all sensor fusion tasks running on a                 
software stack on a central microcontroller. This architecture, while fine for small processing             
tasks such as processing data from an ultrasonic or RADAR sensor, is ultimately not suited for                
the heavy processing required for a large LiDAR point cloud. The execution time for a full                
snapshot should be evidence enough of this: a single snapshot takes 35ms to execute out of a                 
potential real-time window of 100ms for the LiDAR alone. This however discounts the             
requirement of other sensor interfaces to run, for camera data to be processed, etc. Not to                
mention that if a camera were operating at 30 frames per second, and the LiDAR data were to                  
be fused with the image, then the processing time for a single snapshot would have to be under                  
33ms if not less. While multithreading certainly seems promising, a more direct approach may in               
fact be required depending on the cost, performance, and power requirements of a solution.  
 
Hardware acceleration using a Graphics Processing Unit (GPU), Field-Programmable Gate          
Array (FPGA) or Application-Specific Integrated Circuit (ASIC) would allow for high-performance           
computing of the curb detection algorithm and other sensor fusion tasks. In [44], multiple              
hardware architectures for autonomous vehicles are introduced. These systems use a selection            
of ASICs, FPGAs, CPUs and GPUs “to deliver enough computing power, redundancy, and             
security so as to guarantee the safety of autonomous vehicles” [44]. While autonomous driving              
is not strictly the purpose of this project, it does relate to ADAS insofar as many of the tasks are                    
the same, just performed at different levels of autonomy. Hardware acceleration could be used              
in an ADAS to provide the necessary speedup for heavy processing tasks such as LiDAR, or                
vision processing. Additionally, hardware designs can take advantage of pipelining and parallel            
execution units to allow for concurrent task execution. This would allow for LiDAR processing              
much faster than could be provided by a central microcontroller. However, two factors reduce              
the utility of a hardware-accelerated solution: cost and complexity. If a hardware system costs              
too much or if the processing can be accomplished with a cheaper solution in software, then                
manufacturers will likely go with what’s cheaper. [44] for example, reports that Audi has used               
Altera’s Cyclone V board (which contains an FPGA) in it’s autonomous driving solutions. The              
implication here is of course that these hardware solutions are still too expensive for general               
production, or affordable brands. In terms of the complexity of the hardware solution, it is not                
entirely evident how clustering or other dynamic tasks could be accomplished within a hardware              
solution. Given the complexity of such a task, it may in fact be worthwhile to only accelerate the                  
initial stages of the algorithm, leaving the rest for software implementation. In general, however,              
implementations in hardware seem to be effective and popular for ADAS.  
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9.2 Improvements to Filtering and Clustering Steps 
As detailed in ​Chapter 6​, several filtering and clustering steps were used in the curb detection                
methods. These steps were crucial in the initial point removal and the maintainment of curb               
points. Although a significant portion of the curb has been maintained, these filters can be               
improved further. For example, the cosine similarity filter step described in ​Section 6.2 removes              
all adjacent curb points to the vehicle. An augmented similarity filter was introduced in ​Section               
6.2.2 which improved the retention of curb points adjacent to the vehicle, however it introduced               
more noise. An improved filter that maintains full curb resolution and reduces noise from              
passing through would be an ideal filter for this step in the curb detection method. Further                
improving the filtering steps will significantly improve the resolution and accuracy of the final              
results for the curb detection method. 
 
The clustering step described in ​Section 3 assumes a constant point density for curb clusters.               
This assumption is incorrect since point density decreases the further the points are from the               
vehicle. Therefore, a new clustering method should be proposed that is able to handle variation               
of point densities [23]. HDBSCAN is a clustering method that does not require the epsilon               
hyperparameter from DBSCAN, and is able to cluster points with varying densities. This             
improves the point clustering by clustering more of the curb into a single cluster. The improved                
clustering will positively improve the rest of the method since the point cloud will have a more                 
coherent structure.  
 
Another possible clustering algorithm is a variation of HDBSCAN that clusters points based on a               
group normal vector. As described previously, curbs are expected to have a strong normal              
vector component in the x direction, and a weak component in the z direction. Therefore,               
clustering based on normal vector components will have an improvement for clustering curbs             
specifically. In addition, clusters that have a strong normal vector component in the z direction               
can be removed. This will remove the need of the Denoise step from the curb detection method,                 
making it more efficient.  
 

9.3 Machine Learning for Sliding-Window Filters 
As explored in ​Chapter 5​, sliding window approaches can be used to extract features from a set                 
of data. The methods presented in ​Chapter 5 failed to produce effective detection results since               
they failed to effectively produce a classification mechanism. The curb detection method            
presented in ​Chapter 6 uses a multi-feature loose threshold approach to delineate curb points              
from others. Based on the papers introduced in ​Chapter 3​, it is already possible to create                
machine learning models, such as convolutional neural networks, to classify road points. It             
should also therefore be possible to create networks to classify curb points. One such example               
of a road detection network is presented in [18], where a Deep CNN is trained to fuse LiDAR                  
and image data. The data is fused over multiple layers, and the result of the final fusion layer is                   
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passed to a classification layer which identifies the road features, allowing for highly accurate              
road detection. The same process can be followed for curb detection: train a convolutional              
neural network to classify curb points and, as input, pass full LiDAR snapshots. The CNN uses                
filters which traverse the input data as a sliding window. The difference being that a CNN,                
during training, learns the weights for the filters such that they can be used to identify curbs or                  
other objects. This would likely be a large improvement to the tested sliding window approaches               
since the filter would be learned directly from real data, not from an abstracted view of what                 
curbs should appear like.  
 
Neural networks are advantageous since, once they are trained, they only require a single pass               
through the network to classify a point or set of points [36]. One disadvantage with a neural                 
network is the reliance on labelled training data which unfortunately does not exist in large               
enough quantities for curb detection. This may explain the heavy focus of many papers on road                
detection with LiDAR since datasets like KITTI provide labelled point clouds and images for              
roads and many obstacles. For the purposes of this project, it was sufficient to use a detected                 
road edge to corroborate curb detection. As a research topic, road detection with CNNs in               
LiDAR is well developed, and could provide useful input to the corroboration of curbs. However,               
additional problems exist with CNNs: large computational complexity, memory usage, and           
power consumption. Without hardware acceleration, a real-time system using CNNs as a main             
detection mechanism is hard to foresee. Tesla, for example, has fabricated ASICs specifically             
for computer vision tasks since the sheer volume of information to process is immense [45].               
CNNs for image processing can have many hundreds of thousands of weights, and may require               
millions of operations to complete a single detection. The same is expected for LiDAR-based              
CNNs, so it may not be practical to deploy neural networks as such to production vehicles.  
 

9.4 Sensor Fusion 
Chapter 3 introduced curb and road detection techniques ranging from camera- to            
LiDAR-based methods. The research conducted for this project revealed a trend in the             
highest-accuracy detection techniques: sensor fusion. When two sensors were used to           
corroborate one another, the curb and/or road detection was much more accurate. This was              
realized specifically with Progressive LiDAR Adaptation for Road Detection (PLARD), which           
fused cameras and LiDAR through a progressive mapping technique [18]. The same idea is              
most likely applicable to curb detection, with the caveat that many of these high-accuracy              
techniques employ machine learning which, as discussed above, is not suitable for curb             
detection due to the virtual non-existence of labelled datasets. However, it may be possible,              
such as was attempted in this project, to corroborate curb detection with road detection. In this                
case, the detection of a road and/or curb could be useful in increasing confidence scores,               
granted that a confidence metric could be created to handle such a task. A method of curb                 
detection that should be investigated towards this end is introduced in [14], where stereo              
cameras are used to construct elevation maps where edges can be extracted, and curbs              
identified. Using sensor fusion techniques, the camera-detected curbs could then be overlayed            
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onto the LiDAR-detected curbs and corroborated. Many other schemes are possible, but this             
certainly seems to be viable, and worth investigation.  
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Conclusion 
Advanced driver assistance systems are a key element of the modern vehicle. Their use cases               
extend from the mundane tasks: blind spot detection, lane departure warnings, and so on; to the                
complex tasks: adaptive cruise control, collision avoidance, and more. The common threads            
here: ADAS should aid in accident prevention, and it should be supplemental to the driver, not                
replacing the driver. That said, ADAS can be seen as a primary stepping stone towards fully                
autonomous driving. As they currently stand, these systems are not capable of handling             
dynamic driving tasks, nor are they capable of human-level decision making; however, research             
towards improvements in ADAS technologies leads closer to fully automated vehicles. This            
project strove to develop an environmental perception method which could be used to aid              
human drivers and ADAS in the safe completion of the driving task. Environmental perception is               
a necessary category of assistance systems as such. Without adequate perception of the             
environment, a system would struggle to make decisions, let alone safety-critical decisions.            
Thus, for the safety of vehicle occupants and the system as a whole, the methods were                
designed with real-time, reliable operation in mind.  
 
Through a literature review, contemporary methods of environmental perception for road and            
curb detection were studied. Methods ranging from camera-based detection, to LiDAR-based           
detection and sensor fusion were investigated for their benefits and drawbacks. It was             
discovered that sensor fusion between LiDAR and cameras often heralded the best results for              
road detection; the main benefit being that the separate sensors could corroborate one another              
to produce a better, more confident detection. Although sensor fusion was not used in this               
project, the idea of mutual corroboration was instrumental in the development and integration of              
the two presented methods: curb detection, and road detection. The curb detection method             
used a filtering methodology whereby points were removed from a point cloud until the curb               
could be identified and extracted. Road detection on the other hand identified inflection points              
on the road, and used these to classify the edges of the road. Inflection points were used to                  
corroborate the curb detection, and provide a higher confidence level to those segments that              
consisted of, or resided near, an inflection point. Using these methods, the edges of the road                
can be identified and reported to an ADAS for further processing and decision making.              
Considerable improvements can still be made to the presented methods to further increase             
detection accuracy, testability, and confidence.  
 
The results presented in ​Chapter 8 clearly indicated that the detection method could identify              
curbs with relatively high resolution, without many false positives in the roadway. Problems             
however arose with the method during sparsity testing, where false positives from early filtering              
steps in curb detection would lead to false positive segments within the roadway. Two              
improvements can be made towards this end: 1) improve the filtering steps presented in              
Section 6.2 so that fewer points remain on the road, and 2) improve segment grouping and                
intra-cluster confidence to remove segments that are dissimilar. In addition, the confidence            
metrics often fail to produce usable confidence levels because they are only calculated within              
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clusters. Inter-cluster confidence must therefore be improved to give usable confidence levels.            
Finally, a method of comparing detection results to the real location of curbs must be developed                
in order to benchmark the detection methods. This is problematic as labelling curbs is a tedious                
task, and it is not clear how segments could be compared to the real curb location, nor how the                   
confidence levels could be measured for accuracy. These issues and recommendations are left             
for further research.  
 
As per the goal of this project, through the various implementations and designs, curb detection               
has been accomplished. Novel methods were created towards this goal. The filtering steps, both              
in the method and the approach, were either entirely new, or improvements on contemporary              
methods. The methodology towards filtering was identified from research in the field, and             
adapted to a new approach. The combination of multiple research papers and innovation on top               
of them led to the results herein presented. The method of segmentation was entirely novel, and                
while it still requires development, is a useful approach to reporting the curb location. Finally, the                
combination of multiple LiDAR-based methods for corroboration has not been identified in            
research, and so it is considered a novel method of fusion. Using the results of the curb                 
detection method, an ADAS system would be able to identify curb locations with relatively high               
certainty, thus accomplishing the goal of the project, allowing for better environmental            
perception and a safer driving experience.  
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